File size: 9,955 Bytes
53ac1bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
---
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: 고린GORIN 버튼식 자전거 링자물쇠 도난방지 일본 발매 GR520-SL 스포츠/레저>자전거>자전거용품>자물쇠
- text: Race Face 좁은 와이드 신치 체인링 시마노 12단 스피드 30t 스포츠/레저>자전거>자전거부품>체인
- text: 폭스레이싱 프리 저지 롱프리 팬츠 세트 179 195M 자전거의류 라이딩복 싸이클상의 바지 7부소매 스포츠/레저>자전거>자전거의류/잡화>상하세트
- text: 브레이크호스 브레이크 유압 케이블 오일 스포츠/레저>자전거>자전거부품>브레이크
- text: 사일런스 반팔져지 에어로핏 스포츠/레저>자전거>자전거의류/잡화>상의
metrics:
- accuracy
pipeline_tag: text-classification
library_name: setfit
inference: true
base_model: mini1013/master_domain
model-index:
- name: SetFit with mini1013/master_domain
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 1.0
name: Accuracy
---
# SetFit with mini1013/master_domain
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 4 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.0 | <ul><li>'시마노 SHIMANO 크랭크 세트 12s 32T FC-M6120-1 EFCM61201EXA2 스포츠/레저>자전거>자전거부품>변속기'</li><li>'트레벨로 접이식 폴딩 실내자전거거치대 스포츠/레저>자전거>자전거부품>스탠드'</li><li>'MTB 포크 자전거 서스펜션 앞 26 27 5 충격흡수 Fork 쇼바 합금 스포츠/레저>자전거>자전거부품>프레임/포크'</li></ul> |
| 2.0 | <ul><li>'파크툴 106 워크 트레이 정비대 액세서리 스포츠/레저>자전거>자전거용품>공구'</li><li>'비엠웍스 로드 자전거 물통 컨투어 750 32032038 스포츠/레저>자전거>자전거용품>케이지'</li><li>'RBRL 자갈 자전거 윙 플랫 핸들 로드 펜더 퀵릴리즈 700c 머드가드 스포츠/레저>자전거>자전거용품>흙받이'</li></ul> |
| 0.0 | <ul><li>'엠비에스코퍼레이션 엘파마 벤토르 V2000 MTB 자전거 2022년 스포츠/레저>자전거>자전거/MTB>MTB'</li><li>'QUAX 온리원 외발자전거 스포츠/레저>자전거>자전거/MTB>특수자전거'</li><li>'ATECX 컴포트 2700D 유사MTB 2023년 스포츠/레저>자전거>자전거/MTB>유사MTB'</li></ul> |
| 3.0 | <ul><li>'라이딩 백팩 대용량 방수 오토바이 헬멧 가방 바이크 스포츠/레저>자전거>자전거의류/잡화>배낭'</li><li>'Castelli 뉴 카스텔리 아리아 여성 방풍 사이클링 바람 조끼 DARK 스포츠/레저>자전거>자전거의류/잡화>상의'</li><li>'ENDURANCE 엔듀런스 지구력 저스틴 - 조끼 322109 스포츠/레저>자전거>자전거의류/잡화>상의'</li></ul> |
## Evaluation
### Metrics
| Label | Accuracy |
|:--------|:---------|
| **all** | 1.0 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_sl25")
# Run inference
preds = model("사일런스 반팔져지 에어로핏 스포츠/레저>자전거>자전거의류/잡화>상의")
```
<!--
### Downstream Use
*List how someone could finetune this model on their own dataset.*
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count | 4 | 8.5714 | 21 |
| Label | Training Sample Count |
|:------|:----------------------|
| 0.0 | 70 |
| 1.0 | 70 |
| 2.0 | 70 |
| 3.0 | 70 |
### Training Hyperparameters
- batch_size: (256, 256)
- num_epochs: (30, 30)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 50
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:-------:|:----:|:-------------:|:---------------:|
| 0.0182 | 1 | 0.4882 | - |
| 0.9091 | 50 | 0.4972 | - |
| 1.8182 | 100 | 0.3608 | - |
| 2.7273 | 150 | 0.0243 | - |
| 3.6364 | 200 | 0.0 | - |
| 4.5455 | 250 | 0.0 | - |
| 5.4545 | 300 | 0.0 | - |
| 6.3636 | 350 | 0.0 | - |
| 7.2727 | 400 | 0.0 | - |
| 8.1818 | 450 | 0.0 | - |
| 9.0909 | 500 | 0.0 | - |
| 10.0 | 550 | 0.0 | - |
| 10.9091 | 600 | 0.0 | - |
| 11.8182 | 650 | 0.0 | - |
| 12.7273 | 700 | 0.0 | - |
| 13.6364 | 750 | 0.0 | - |
| 14.5455 | 800 | 0.0 | - |
| 15.4545 | 850 | 0.0 | - |
| 16.3636 | 900 | 0.0 | - |
| 17.2727 | 950 | 0.0 | - |
| 18.1818 | 1000 | 0.0 | - |
| 19.0909 | 1050 | 0.0 | - |
| 20.0 | 1100 | 0.0 | - |
| 20.9091 | 1150 | 0.0 | - |
| 21.8182 | 1200 | 0.0 | - |
| 22.7273 | 1250 | 0.0 | - |
| 23.6364 | 1300 | 0.0 | - |
| 24.5455 | 1350 | 0.0 | - |
| 25.4545 | 1400 | 0.0 | - |
| 26.3636 | 1450 | 0.0 | - |
| 27.2727 | 1500 | 0.0 | - |
| 28.1818 | 1550 | 0.0 | - |
| 29.0909 | 1600 | 0.0 | - |
| 30.0 | 1650 | 0.0 | - |
### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0
- Sentence Transformers: 3.3.1
- Transformers: 4.44.2
- PyTorch: 2.2.0a0+81ea7a4
- Datasets: 3.2.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |