mini1013 commited on
Commit
62f5953
·
verified ·
1 Parent(s): 3bbbdf3

Push model using huggingface_hub.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,321 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - setfit
4
+ - sentence-transformers
5
+ - text-classification
6
+ - generated_from_setfit_trainer
7
+ widget:
8
+ - text: 캠핑 데크팩 타프팩 고정핀 단조 스토퍼 텐트비너 고강도 오토캠핑용품 백패킹 스포츠/레저>캠핑>텐트/타프용품>기타텐트/타프용품
9
+ - text: 빅토리캠프 BLAZE 블레이즈 펠렛연소기 캠핑용 화목난로 펠렛난로 차박 야외용 스포츠/레저>캠핑>기타캠핑용품
10
+ - text: 프리모리 세움 스탠다드 슬라이드 폴대 사이드 타프 가변 높이 조절 단품 캠핑 피크닉 스포츠/레저>캠핑>텐트/타프용품>폴대
11
+ - text: 익시드 디자인 TIRANT RAZOR V3 티타늄 만능칼 EDC 포켓 나이프 스포츠/레저>캠핑>취사용품>다용도칼
12
+ - text: 애몰라이트 후레쉬 AM1 표준슬립 손전등 스포츠/레저>캠핑>랜턴>손전등
13
+ metrics:
14
+ - accuracy
15
+ pipeline_tag: text-classification
16
+ library_name: setfit
17
+ inference: true
18
+ base_model: mini1013/master_domain
19
+ model-index:
20
+ - name: SetFit with mini1013/master_domain
21
+ results:
22
+ - task:
23
+ type: text-classification
24
+ name: Text Classification
25
+ dataset:
26
+ name: Unknown
27
+ type: unknown
28
+ split: test
29
+ metrics:
30
+ - type: accuracy
31
+ value: 1.0
32
+ name: Accuracy
33
+ ---
34
+
35
+ # SetFit with mini1013/master_domain
36
+
37
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
38
+
39
+ The model has been trained using an efficient few-shot learning technique that involves:
40
+
41
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
42
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
43
+
44
+ ## Model Details
45
+
46
+ ### Model Description
47
+ - **Model Type:** SetFit
48
+ - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
49
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
50
+ - **Maximum Sequence Length:** 512 tokens
51
+ - **Number of Classes:** 14 classes
52
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
53
+ <!-- - **Language:** Unknown -->
54
+ <!-- - **License:** Unknown -->
55
+
56
+ ### Model Sources
57
+
58
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
59
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
60
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
61
+
62
+ ### Model Labels
63
+ | Label | Examples |
64
+ |:------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
65
+ | 7.0 | <ul><li>'해먹 감성 침대 그네 캠핑 가정용 야외 세트 그물 휴대용 헤먹 차박 비박 스포츠/레저>캠핑>캠핑가구>해먹'</li><li>'그물침대 레인보우 캠핑 감성 휴대용 대형 해먹 스포츠/레저>캠핑>캠핑가구>해먹'</li><li>'야전침대 스웨이드 토퍼 간이 침대커버 매트 스포츠/레저>캠핑>캠핑가구>야전침대'</li></ul> |
66
+ | 1.0 | <ul><li>'식스비 감성 LED C타입 충전식 조명 캠핑랜턴 스포츠/레저>캠핑>랜턴>실내등'</li><li>'원터치 캠핑용 휴대고리 LED 손전등 등산 랜턴 서치라이트 스포츠/레저>캠핑>랜턴>손전등'</li><li>'초슬림 디자인 휴대용후레쉬 9 캠핑후레쉬 소형후레쉬 등산후레쉬 초소형후레쉬 스포츠/레저>캠핑>랜턴>손전등'</li></ul> |
67
+ | 6.0 | <ul><li>'제로그램 모나크250 침낭 스포츠/레저>캠핑>침낭'</li><li>'웜피스 바이킹 900-195CM 침낭 스포츠/레저>캠핑>침낭'</li><li>'다나산업 다나 골드익스페디션-M 침낭 스포츠/레저>캠핑>침낭'</li></ul> |
68
+ | 12.0 | <ul><li>'기프템 캠핑 경량 알류미늄 팩 망치 파운딩 해머 백패킹 힙오렌지 컬러 캠핑장의 힙스터 스포츠/레저>캠핑>텐트/타프용품>기타텐트/타프용품'</li><li>'아캄파 일자3구스토퍼 4P 스포츠/레저>캠핑>텐트/타프용품>기타텐트/타프용품'</li><li>'코베아 고스트 플러스 전용 PVC 그라운드시트 방수포 스포츠/레저>캠핑>텐트/타프용품>방수포/그라운드시트'</li></ul> |
69
+ | 5.0 | <ul><li>'제리캔 스틸 철제 캠핑통 기름통 휘발유 스포츠/레저>캠핑>취사용품>기타취사용품'</li><li>'워터백 폴딩 버킷12L 스포츠/레저>캠핑>취사용품>설거지용품'</li><li>'네이처하이크 캠핑 접이식 설거지통 20L 멀티 방수 다용도 원형 바스켓 스포츠/레저>캠핑>취사용품>설거지용품'</li></ul> |
70
+ | 0.0 | <ul><li>'야외 캠핑 가스 스토브 휴대용 프로판 히터 전자 점화 장치 핸드 워머 화구 텐트 스포츠/레저>캠핑>기타캠핑용품'</li><li>'캠핑 팩백 팩파우치 휴대용 도구가방 툴백 스포츠/레저>캠핑>기타캠핑용품'</li><li>'등산 캠핑 비상용 파라코드 생존팔찌 조난생존팔찌 스포츠/레저>캠핑>기타캠핑용품'</li></ul> |
71
+ | 10.0 | <ul><li>'캠핑클럽 사이드월 타프 420 스포츠/레저>캠핑>타프'</li><li>'쾌청 립스탑 렉타 타프 2 x 2m 스포츠/레저>캠핑>타프'</li><li>'네이처하이크 NH 4M 렉타 타프 스포츠/레저>캠핑>타프'</li></ul> |
72
+ | 8.0 | <ul><li>'호토 에어 매트리스 QWOGJ003 스포츠/레저>캠핑>캠핑매트'</li><li>'토토비즈 힐링 에스닉 캠핑매트 TM-H017 스포츠/레저>캠핑>캠핑매트'</li><li>'어반카모 팽창식 침대 캠핑매트 40cm 싱글 스포츠/레저>캠핑>캠핑매트'</li></ul> |
73
+ | 11.0 | <ul><li>'하이브로우 블랙테일 3 텐트 스포츠/레저>캠핑>텐트>2-3인용'</li><li>'코베아 몬스터 터널형 텐트 KECO9TO 4인용 스포츠/레저>캠핑>텐트>3-4인용'</li><li>'노스피크 스타쉽 텐트 4인용 스포츠/레저>캠핑>텐트>3-4인용'</li></ul> |
74
+ | 13.0 | <ul><li>'다이팩토리 파워뱅크 DF 230A 스포츠/레저>캠핑>파워뱅크'</li><li>'에코플로우 리버 맥스 플러스 파워뱅크 60Ah 스포츠/레저>캠핑>파워뱅크'</li><li>'잭커리 휴대용 파워뱅크 L 사이즈 수납가방 ro ro 전용 1500P 2000P 스포츠/레저>캠핑>파워뱅크'</li></ul> |
75
+ | 2.0 | <ul><li>'카즈미 소프트 쿨러 스카디 25L 보냉백 보냉가방 아이스박스 스포츠/레저>캠핑>아이스박스'</li><li>'피크닉가방 쿨러백 캠핑 보온보냉 대용량 25L 보냉백 스포츠/레저>캠핑>아이스박스'</li><li>'세븐플로어 POLARIS 폴라리스 C1 빙점하팩 아이스팩 영하 캠핑 휴대용 쿨러 얼음 냉동 스포츠/레저>캠핑>아이스박스'</li></ul> |
76
+ | 9.0 | <ul><li>'헤비 듀티 대용량 접이식 왜건 쇼핑 비치 가든 풀 트롤리 야외 휴대용 유틸리티 카트 스포츠/레저>캠핑>캠핑왜건'</li><li>'캠파오 캠핑웨건 접이식 카트 뒷문개방 왜건 스포츠/레저>캠핑>캠핑왜건'</li><li>'캠핑용 수레 경량 접이식 폴딩 웨건카트 스포츠/레저>캠핑>캠핑왜건'</li></ul> |
77
+ | 4.0 | <ul><li>'프리폼 캐노피 천막 2x2m 스포츠/레저>캠핑>천막'</li><li>'런웨이브 천막캐노피용 일반 바람막이 4면세트 3mX2m 스포츠/레저>캠핑>천막'</li><li>'리브포어스 접이식 캐노피 천막 벨크로 타입 투명벽면 풀세트 2m x 2m 스포츠/레저>캠핑>천막'</li></ul> |
78
+ | 3.0 | <ul><li>'캠피어 워터저그 10L 스포츠/레저>캠핑>워터저그'</li><li>'코베아 하드 워터탱크 15L 스포츠/레저>캠핑>워터저그'</li><li>'스탠리 워터저그 수도꼭지 + 스텐인리스판 스포츠/레저>캠핑>워터저그'</li></ul> |
79
+
80
+ ## Evaluation
81
+
82
+ ### Metrics
83
+ | Label | Accuracy |
84
+ |:--------|:---------|
85
+ | **all** | 1.0 |
86
+
87
+ ## Uses
88
+
89
+ ### Direct Use for Inference
90
+
91
+ First install the SetFit library:
92
+
93
+ ```bash
94
+ pip install setfit
95
+ ```
96
+
97
+ Then you can load this model and run inference.
98
+
99
+ ```python
100
+ from setfit import SetFitModel
101
+
102
+ # Download from the 🤗 Hub
103
+ model = SetFitModel.from_pretrained("mini1013/master_cate_sl28")
104
+ # Run inference
105
+ preds = model("애몰라이트 후레쉬 AM1 표준슬립 손전등 스포츠/레저>캠핑>랜턴>손전등")
106
+ ```
107
+
108
+ <!--
109
+ ### Downstream Use
110
+
111
+ *List how someone could finetune this model on their own dataset.*
112
+ -->
113
+
114
+ <!--
115
+ ### Out-of-Scope Use
116
+
117
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
118
+ -->
119
+
120
+ <!--
121
+ ## Bias, Risks and Limitations
122
+
123
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
124
+ -->
125
+
126
+ <!--
127
+ ### Recommendations
128
+
129
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
130
+ -->
131
+
132
+ ## Training Details
133
+
134
+ ### Training Set Metrics
135
+ | Training set | Min | Median | Max |
136
+ |:-------------|:----|:-------|:----|
137
+ | Word count | 3 | 7.8108 | 22 |
138
+
139
+ | Label | Training Sample Count |
140
+ |:------|:----------------------|
141
+ | 0.0 | 70 |
142
+ | 1.0 | 70 |
143
+ | 2.0 | 70 |
144
+ | 3.0 | 25 |
145
+ | 4.0 | 30 |
146
+ | 5.0 | 70 |
147
+ | 6.0 | 70 |
148
+ | 7.0 | 70 |
149
+ | 8.0 | 70 |
150
+ | 9.0 | 70 |
151
+ | 10.0 | 70 |
152
+ | 11.0 | 70 |
153
+ | 12.0 | 70 |
154
+ | 13.0 | 26 |
155
+
156
+ ### Training Hyperparameters
157
+ - batch_size: (256, 256)
158
+ - num_epochs: (30, 30)
159
+ - max_steps: -1
160
+ - sampling_strategy: oversampling
161
+ - num_iterations: 50
162
+ - body_learning_rate: (2e-05, 1e-05)
163
+ - head_learning_rate: 0.01
164
+ - loss: CosineSimilarityLoss
165
+ - distance_metric: cosine_distance
166
+ - margin: 0.25
167
+ - end_to_end: False
168
+ - use_amp: False
169
+ - warmup_proportion: 0.1
170
+ - l2_weight: 0.01
171
+ - seed: 42
172
+ - eval_max_steps: -1
173
+ - load_best_model_at_end: False
174
+
175
+ ### Training Results
176
+ | Epoch | Step | Training Loss | Validation Loss |
177
+ |:-------:|:----:|:-------------:|:---------------:|
178
+ | 0.0060 | 1 | 0.5164 | - |
179
+ | 0.2994 | 50 | 0.4984 | - |
180
+ | 0.5988 | 100 | 0.4882 | - |
181
+ | 0.8982 | 150 | 0.1544 | - |
182
+ | 1.1976 | 200 | 0.0264 | - |
183
+ | 1.4970 | 250 | 0.0089 | - |
184
+ | 1.7964 | 300 | 0.0027 | - |
185
+ | 2.0958 | 350 | 0.0003 | - |
186
+ | 2.3952 | 400 | 0.0002 | - |
187
+ | 2.6946 | 450 | 0.0001 | - |
188
+ | 2.9940 | 500 | 0.0001 | - |
189
+ | 3.2934 | 550 | 0.0001 | - |
190
+ | 3.5928 | 600 | 0.0001 | - |
191
+ | 3.8922 | 650 | 0.0001 | - |
192
+ | 4.1916 | 700 | 0.0001 | - |
193
+ | 4.4910 | 750 | 0.0 | - |
194
+ | 4.7904 | 800 | 0.0 | - |
195
+ | 5.0898 | 850 | 0.0 | - |
196
+ | 5.3892 | 900 | 0.0 | - |
197
+ | 5.6886 | 950 | 0.0 | - |
198
+ | 5.9880 | 1000 | 0.0 | - |
199
+ | 6.2874 | 1050 | 0.0 | - |
200
+ | 6.5868 | 1100 | 0.0 | - |
201
+ | 6.8862 | 1150 | 0.0 | - |
202
+ | 7.1856 | 1200 | 0.0 | - |
203
+ | 7.4850 | 1250 | 0.0 | - |
204
+ | 7.7844 | 1300 | 0.0 | - |
205
+ | 8.0838 | 1350 | 0.0 | - |
206
+ | 8.3832 | 1400 | 0.0 | - |
207
+ | 8.6826 | 1450 | 0.0 | - |
208
+ | 8.9820 | 1500 | 0.0 | - |
209
+ | 9.2814 | 1550 | 0.0 | - |
210
+ | 9.5808 | 1600 | 0.0 | - |
211
+ | 9.8802 | 1650 | 0.0 | - |
212
+ | 10.1796 | 1700 | 0.0 | - |
213
+ | 10.4790 | 1750 | 0.0 | - |
214
+ | 10.7784 | 1800 | 0.0 | - |
215
+ | 11.0778 | 1850 | 0.0 | - |
216
+ | 11.3772 | 1900 | 0.0 | - |
217
+ | 11.6766 | 1950 | 0.0 | - |
218
+ | 11.9760 | 2000 | 0.0 | - |
219
+ | 12.2754 | 2050 | 0.0 | - |
220
+ | 12.5749 | 2100 | 0.0 | - |
221
+ | 12.8743 | 2150 | 0.0 | - |
222
+ | 13.1737 | 2200 | 0.0 | - |
223
+ | 13.4731 | 2250 | 0.0 | - |
224
+ | 13.7725 | 2300 | 0.0 | - |
225
+ | 14.0719 | 2350 | 0.0 | - |
226
+ | 14.3713 | 2400 | 0.0 | - |
227
+ | 14.6707 | 2450 | 0.0 | - |
228
+ | 14.9701 | 2500 | 0.0 | - |
229
+ | 15.2695 | 2550 | 0.0 | - |
230
+ | 15.5689 | 2600 | 0.0 | - |
231
+ | 15.8683 | 2650 | 0.0 | - |
232
+ | 16.1677 | 2700 | 0.0 | - |
233
+ | 16.4671 | 2750 | 0.0 | - |
234
+ | 16.7665 | 2800 | 0.0 | - |
235
+ | 17.0659 | 2850 | 0.0 | - |
236
+ | 17.3653 | 2900 | 0.0 | - |
237
+ | 17.6647 | 2950 | 0.0 | - |
238
+ | 17.9641 | 3000 | 0.0 | - |
239
+ | 18.2635 | 3050 | 0.0 | - |
240
+ | 18.5629 | 3100 | 0.0 | - |
241
+ | 18.8623 | 3150 | 0.0 | - |
242
+ | 19.1617 | 3200 | 0.0 | - |
243
+ | 19.4611 | 3250 | 0.0 | - |
244
+ | 19.7605 | 3300 | 0.0 | - |
245
+ | 20.0599 | 3350 | 0.0 | - |
246
+ | 20.3593 | 3400 | 0.0 | - |
247
+ | 20.6587 | 3450 | 0.0 | - |
248
+ | 20.9581 | 3500 | 0.0 | - |
249
+ | 21.2575 | 3550 | 0.0 | - |
250
+ | 21.5569 | 3600 | 0.0 | - |
251
+ | 21.8563 | 3650 | 0.0 | - |
252
+ | 22.1557 | 3700 | 0.0 | - |
253
+ | 22.4551 | 3750 | 0.0 | - |
254
+ | 22.7545 | 3800 | 0.0 | - |
255
+ | 23.0539 | 3850 | 0.0 | - |
256
+ | 23.3533 | 3900 | 0.0 | - |
257
+ | 23.6527 | 3950 | 0.0 | - |
258
+ | 23.9521 | 4000 | 0.0 | - |
259
+ | 24.2515 | 4050 | 0.0 | - |
260
+ | 24.5509 | 4100 | 0.0 | - |
261
+ | 24.8503 | 4150 | 0.0 | - |
262
+ | 25.1497 | 4200 | 0.0 | - |
263
+ | 25.4491 | 4250 | 0.0 | - |
264
+ | 25.7485 | 4300 | 0.0 | - |
265
+ | 26.0479 | 4350 | 0.0 | - |
266
+ | 26.3473 | 4400 | 0.0 | - |
267
+ | 26.6467 | 4450 | 0.0 | - |
268
+ | 26.9461 | 4500 | 0.0 | - |
269
+ | 27.2455 | 4550 | 0.0 | - |
270
+ | 27.5449 | 4600 | 0.0 | - |
271
+ | 27.8443 | 4650 | 0.0 | - |
272
+ | 28.1437 | 4700 | 0.0 | - |
273
+ | 28.4431 | 4750 | 0.0 | - |
274
+ | 28.7425 | 4800 | 0.0 | - |
275
+ | 29.0419 | 4850 | 0.0 | - |
276
+ | 29.3413 | 4900 | 0.0 | - |
277
+ | 29.6407 | 4950 | 0.0 | - |
278
+ | 29.9401 | 5000 | 0.0 | - |
279
+
280
+ ### Framework Versions
281
+ - Python: 3.10.12
282
+ - SetFit: 1.1.0
283
+ - Sentence Transformers: 3.3.1
284
+ - Transformers: 4.44.2
285
+ - PyTorch: 2.2.0a0+81ea7a4
286
+ - Datasets: 3.2.0
287
+ - Tokenizers: 0.19.1
288
+
289
+ ## Citation
290
+
291
+ ### BibTeX
292
+ ```bibtex
293
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
294
+ doi = {10.48550/ARXIV.2209.11055},
295
+ url = {https://arxiv.org/abs/2209.11055},
296
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
297
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
298
+ title = {Efficient Few-Shot Learning Without Prompts},
299
+ publisher = {arXiv},
300
+ year = {2022},
301
+ copyright = {Creative Commons Attribution 4.0 International}
302
+ }
303
+ ```
304
+
305
+ <!--
306
+ ## Glossary
307
+
308
+ *Clearly define terms in order to be accessible across audiences.*
309
+ -->
310
+
311
+ <!--
312
+ ## Model Card Authors
313
+
314
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
315
+ -->
316
+
317
+ <!--
318
+ ## Model Card Contact
319
+
320
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
321
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mini1013/master_item_sl_org_gtcate",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "tokenizer_class": "BertTokenizer",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.44.2",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 32000
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.2.0a0+81ea7a4"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "labels": null,
3
+ "normalize_embeddings": false
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cb8e164857a910fdb017b5d6173bbac82d35b4c332e3b009b129ffd4f863cd47
3
+ size 442494816
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f041c7fede9b958f414aa67df7eeb42362cccb92d4f5b6a54cd2f7d1862671f9
3
+ size 87047
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "[SEP]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "[MASK]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "[SEP]",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[CLS]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[PAD]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "[CLS]",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": false,
49
+ "eos_token": "[SEP]",
50
+ "mask_token": "[MASK]",
51
+ "max_length": 512,
52
+ "model_max_length": 512,
53
+ "never_split": null,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "[PAD]",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "sep_token": "[SEP]",
59
+ "stride": 0,
60
+ "strip_accents": null,
61
+ "tokenize_chinese_chars": true,
62
+ "tokenizer_class": "BertTokenizer",
63
+ "truncation_side": "right",
64
+ "truncation_strategy": "longest_first",
65
+ "unk_token": "[UNK]"
66
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff