--- base_model: klue/roberta-base library_name: setfit metrics: - metric pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: '[자체제작] 14k 콩사다리 체인 반지 핑크_D style(1푼 굵기)_10호 (주)제이디아이인터내셔널' - text: 실리콘 동전 지갑 심플 캐릭터 [on] 블랙캣(동전지갑) 비150 - text: 체크 남자 베레모 아빠 모자 헌팅캡 패션 빵모자 외출 베이지체크 (4JS) 포제이스 - text: TIMBERLAND 남성 앨번 6인치 워터프루프 워커부츠_TB0A1OIZC641 070(250) 비츠컴퍼니 - text: 라인댄스화 헬스화 스포츠 여성 재즈화 댄스화 볼룸 모던 미드힐 37_블랙 스트레이트 3.5cm/굽(메쉬) 사랑옵다 inference: true model-index: - name: SetFit with klue/roberta-base results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: metric value: 0.9385943021823656 name: Metric --- # SetFit with klue/roberta-base This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [klue/roberta-base](https://huggingface.co/klue/roberta-base) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [klue/roberta-base](https://huggingface.co/klue/roberta-base) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 17 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 2.0 | | | 9.0 | | | 15.0 | | | 13.0 | | | 1.0 | | | 7.0 | | | 11.0 | | | 4.0 | | | 14.0 | | | 0.0 | | | 16.0 | | | 8.0 | | | 5.0 | | | 10.0 | | | 6.0 | | | 3.0 | | | 12.0 | | ## Evaluation ### Metrics | Label | Metric | |:--------|:-------| | **all** | 0.9386 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("mini1013/master_item_ac") # Run inference preds = model("실리콘 동전 지갑 심플 캐릭터 [on] 블랙캣(동전지갑) 비150") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 3 | 10.2537 | 30 | | Label | Training Sample Count | |:------|:----------------------| | 0.0 | 450 | | 1.0 | 650 | | 2.0 | 650 | | 3.0 | 150 | | 4.0 | 300 | | 5.0 | 120 | | 6.0 | 224 | | 7.0 | 350 | | 8.0 | 100 | | 9.0 | 467 | | 10.0 | 500 | | 11.0 | 600 | | 12.0 | 150 | | 13.0 | 450 | | 14.0 | 400 | | 15.0 | 1000 | | 16.0 | 250 | ### Training Hyperparameters - batch_size: (512, 512) - num_epochs: (20, 20) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 40 - body_learning_rate: (2e-05, 2e-05) - head_learning_rate: 2e-05 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-------:|:-----:|:-------------:|:---------------:| | 0.0009 | 1 | 0.407 | - | | 0.0469 | 50 | 0.3772 | - | | 0.0939 | 100 | 0.3062 | - | | 0.1408 | 150 | 0.2861 | - | | 0.1878 | 200 | 0.2513 | - | | 0.2347 | 250 | 0.2284 | - | | 0.2817 | 300 | 0.1952 | - | | 0.3286 | 350 | 0.149 | - | | 0.3756 | 400 | 0.1154 | - | | 0.4225 | 450 | 0.1042 | - | | 0.4695 | 500 | 0.0802 | - | | 0.5164 | 550 | 0.0765 | - | | 0.5634 | 600 | 0.0767 | - | | 0.6103 | 650 | 0.0475 | - | | 0.6573 | 700 | 0.0535 | - | | 0.7042 | 750 | 0.0293 | - | | 0.7512 | 800 | 0.0388 | - | | 0.7981 | 850 | 0.0156 | - | | 0.8451 | 900 | 0.0348 | - | | 0.8920 | 950 | 0.0241 | - | | 0.9390 | 1000 | 0.023 | - | | 0.9859 | 1050 | 0.0166 | - | | 1.0329 | 1100 | 0.0124 | - | | 1.0798 | 1150 | 0.0139 | - | | 1.1268 | 1200 | 0.0122 | - | | 1.1737 | 1250 | 0.0111 | - | | 1.2207 | 1300 | 0.0062 | - | | 1.2676 | 1350 | 0.0106 | - | | 1.3146 | 1400 | 0.0112 | - | | 1.3615 | 1450 | 0.0137 | - | | 1.4085 | 1500 | 0.0154 | - | | 1.4554 | 1550 | 0.0185 | - | | 1.5023 | 1600 | 0.0248 | - | | 1.5493 | 1650 | 0.0128 | - | | 1.5962 | 1700 | 0.018 | - | | 1.6432 | 1750 | 0.0013 | - | | 1.6901 | 1800 | 0.0151 | - | | 1.7371 | 1850 | 0.0208 | - | | 1.7840 | 1900 | 0.0076 | - | | 1.8310 | 1950 | 0.0138 | - | | 1.8779 | 2000 | 0.0133 | - | | 1.9249 | 2050 | 0.0131 | - | | 1.9718 | 2100 | 0.0123 | - | | 2.0188 | 2150 | 0.0165 | - | | 2.0657 | 2200 | 0.0084 | - | | 2.1127 | 2250 | 0.0062 | - | | 2.1596 | 2300 | 0.0068 | - | | 2.2066 | 2350 | 0.0023 | - | | 2.2535 | 2400 | 0.006 | - | | 2.3005 | 2450 | 0.0048 | - | | 2.3474 | 2500 | 0.0016 | - | | 2.3944 | 2550 | 0.0046 | - | | 2.4413 | 2600 | 0.001 | - | | 2.4883 | 2650 | 0.0022 | - | | 2.5352 | 2700 | 0.0014 | - | | 2.5822 | 2750 | 0.0004 | - | | 2.6291 | 2800 | 0.0002 | - | | 2.6761 | 2850 | 0.0004 | - | | 2.7230 | 2900 | 0.0016 | - | | 2.7700 | 2950 | 0.0018 | - | | 2.8169 | 3000 | 0.0004 | - | | 2.8638 | 3050 | 0.0001 | - | | 2.9108 | 3100 | 0.0002 | - | | 2.9577 | 3150 | 0.0018 | - | | 3.0047 | 3200 | 0.0019 | - | | 3.0516 | 3250 | 0.0001 | - | | 3.0986 | 3300 | 0.0011 | - | | 3.1455 | 3350 | 0.0001 | - | | 3.1925 | 3400 | 0.0001 | - | | 3.2394 | 3450 | 0.0002 | - | | 3.2864 | 3500 | 0.0007 | - | | 3.3333 | 3550 | 0.0001 | - | | 3.3803 | 3600 | 0.0002 | - | | 3.4272 | 3650 | 0.0001 | - | | 3.4742 | 3700 | 0.0011 | - | | 3.5211 | 3750 | 0.0013 | - | | 3.5681 | 3800 | 0.0014 | - | | 3.6150 | 3850 | 0.0001 | - | | 3.6620 | 3900 | 0.0001 | - | | 3.7089 | 3950 | 0.0002 | - | | 3.7559 | 4000 | 0.0001 | - | | 3.8028 | 4050 | 0.0014 | - | | 3.8498 | 4100 | 0.0002 | - | | 3.8967 | 4150 | 0.0001 | - | | 3.9437 | 4200 | 0.0 | - | | 3.9906 | 4250 | 0.0 | - | | 4.0376 | 4300 | 0.0001 | - | | 4.0845 | 4350 | 0.0002 | - | | 4.1315 | 4400 | 0.0 | - | | 4.1784 | 4450 | 0.0001 | - | | 4.2254 | 4500 | 0.0 | - | | 4.2723 | 4550 | 0.0 | - | | 4.3192 | 4600 | 0.0003 | - | | 4.3662 | 4650 | 0.0007 | - | | 4.4131 | 4700 | 0.0 | - | | 4.4601 | 4750 | 0.0001 | - | | 4.5070 | 4800 | 0.0011 | - | | 4.5540 | 4850 | 0.0003 | - | | 4.6009 | 4900 | 0.0005 | - | | 4.6479 | 4950 | 0.0001 | - | | 4.6948 | 5000 | 0.0001 | - | | 4.7418 | 5050 | 0.0001 | - | | 4.7887 | 5100 | 0.0001 | - | | 4.8357 | 5150 | 0.0 | - | | 4.8826 | 5200 | 0.0 | - | | 4.9296 | 5250 | 0.0 | - | | 4.9765 | 5300 | 0.0001 | - | | 5.0235 | 5350 | 0.0 | - | | 5.0704 | 5400 | 0.0 | - | | 5.1174 | 5450 | 0.0 | - | | 5.1643 | 5500 | 0.0 | - | | 5.2113 | 5550 | 0.0 | - | | 5.2582 | 5600 | 0.0001 | - | | 5.3052 | 5650 | 0.0 | - | | 5.3521 | 5700 | 0.0 | - | | 5.3991 | 5750 | 0.0 | - | | 5.4460 | 5800 | 0.0 | - | | 5.4930 | 5850 | 0.0 | - | | 5.5399 | 5900 | 0.0 | - | | 5.5869 | 5950 | 0.0 | - | | 5.6338 | 6000 | 0.0 | - | | 5.6808 | 6050 | 0.0 | - | | 5.7277 | 6100 | 0.0 | - | | 5.7746 | 6150 | 0.0 | - | | 5.8216 | 6200 | 0.0 | - | | 5.8685 | 6250 | 0.0 | - | | 5.9155 | 6300 | 0.0001 | - | | 5.9624 | 6350 | 0.0004 | - | | 6.0094 | 6400 | 0.0007 | - | | 6.0563 | 6450 | 0.0 | - | | 6.1033 | 6500 | 0.0001 | - | | 6.1502 | 6550 | 0.0 | - | | 6.1972 | 6600 | 0.0001 | - | | 6.2441 | 6650 | 0.0 | - | | 6.2911 | 6700 | 0.0 | - | | 6.3380 | 6750 | 0.0009 | - | | 6.3850 | 6800 | 0.0 | - | | 6.4319 | 6850 | 0.0001 | - | | 6.4789 | 6900 | 0.0 | - | | 6.5258 | 6950 | 0.0001 | - | | 6.5728 | 7000 | 0.0 | - | | 6.6197 | 7050 | 0.0 | - | | 6.6667 | 7100 | 0.0 | - | | 6.7136 | 7150 | 0.0 | - | | 6.7606 | 7200 | 0.0001 | - | | 6.8075 | 7250 | 0.0 | - | | 6.8545 | 7300 | 0.0 | - | | 6.9014 | 7350 | 0.0 | - | | 6.9484 | 7400 | 0.0 | - | | 6.9953 | 7450 | 0.0 | - | | 7.0423 | 7500 | 0.0 | - | | 7.0892 | 7550 | 0.0 | - | | 7.1362 | 7600 | 0.0 | - | | 7.1831 | 7650 | 0.0 | - | | 7.2300 | 7700 | 0.0 | - | | 7.2770 | 7750 | 0.0001 | - | | 7.3239 | 7800 | 0.0 | - | | 7.3709 | 7850 | 0.0 | - | | 7.4178 | 7900 | 0.0 | - | | 7.4648 | 7950 | 0.0 | - | | 7.5117 | 8000 | 0.0 | - | | 7.5587 | 8050 | 0.0 | - | | 7.6056 | 8100 | 0.0 | - | | 7.6526 | 8150 | 0.0024 | - | | 7.6995 | 8200 | 0.0 | - | | 7.7465 | 8250 | 0.0 | - | | 7.7934 | 8300 | 0.0 | - | | 7.8404 | 8350 | 0.0 | - | | 7.8873 | 8400 | 0.0 | - | | 7.9343 | 8450 | 0.0 | - | | 7.9812 | 8500 | 0.0 | - | | 8.0282 | 8550 | 0.0 | - | | 8.0751 | 8600 | 0.0 | - | | 8.1221 | 8650 | 0.0 | - | | 8.1690 | 8700 | 0.0 | - | | 8.2160 | 8750 | 0.0 | - | | 8.2629 | 8800 | 0.0 | - | | 8.3099 | 8850 | 0.0 | - | | 8.3568 | 8900 | 0.0 | - | | 8.4038 | 8950 | 0.0 | - | | 8.4507 | 9000 | 0.0 | - | | 8.4977 | 9050 | 0.0 | - | | 8.5446 | 9100 | 0.0 | - | | 8.5915 | 9150 | 0.0 | - | | 8.6385 | 9200 | 0.0002 | - | | 8.6854 | 9250 | 0.0003 | - | | 8.7324 | 9300 | 0.0005 | - | | 8.7793 | 9350 | 0.0001 | - | | 8.8263 | 9400 | 0.0001 | - | | 8.8732 | 9450 | 0.0001 | - | | 8.9202 | 9500 | 0.0 | - | | 8.9671 | 9550 | 0.0 | - | | 9.0141 | 9600 | 0.0001 | - | | 9.0610 | 9650 | 0.0001 | - | | 9.1080 | 9700 | 0.0 | - | | 9.1549 | 9750 | 0.0 | - | | 9.2019 | 9800 | 0.0001 | - | | 9.2488 | 9850 | 0.0 | - | | 9.2958 | 9900 | 0.0 | - | | 9.3427 | 9950 | 0.0 | - | | 9.3897 | 10000 | 0.0 | - | | 9.4366 | 10050 | 0.0 | - | | 9.4836 | 10100 | 0.0 | - | | 9.5305 | 10150 | 0.0 | - | | 9.5775 | 10200 | 0.0 | - | | 9.6244 | 10250 | 0.0 | - | | 9.6714 | 10300 | 0.0 | - | | 9.7183 | 10350 | 0.0 | - | | 9.7653 | 10400 | 0.0 | - | | 9.8122 | 10450 | 0.0 | - | | 9.8592 | 10500 | 0.0016 | - | | 9.9061 | 10550 | 0.0 | - | | 9.9531 | 10600 | 0.0 | - | | 10.0 | 10650 | 0.0 | - | | 10.0469 | 10700 | 0.0003 | - | | 10.0939 | 10750 | 0.0 | - | | 10.1408 | 10800 | 0.0 | - | | 10.1878 | 10850 | 0.0 | - | | 10.2347 | 10900 | 0.0 | - | | 10.2817 | 10950 | 0.0 | - | | 10.3286 | 11000 | 0.0 | - | | 10.3756 | 11050 | 0.0 | - | | 10.4225 | 11100 | 0.0 | - | | 10.4695 | 11150 | 0.0 | - | | 10.5164 | 11200 | 0.0 | - | | 10.5634 | 11250 | 0.0 | - | | 10.6103 | 11300 | 0.0 | - | | 10.6573 | 11350 | 0.0 | - | | 10.7042 | 11400 | 0.0 | - | | 10.7512 | 11450 | 0.0 | - | | 10.7981 | 11500 | 0.0 | - | | 10.8451 | 11550 | 0.0 | - | | 10.8920 | 11600 | 0.0 | - | | 10.9390 | 11650 | 0.0 | - | | 10.9859 | 11700 | 0.0 | - | | 11.0329 | 11750 | 0.0 | - | | 11.0798 | 11800 | 0.0 | - | | 11.1268 | 11850 | 0.0 | - | | 11.1737 | 11900 | 0.0 | - | | 11.2207 | 11950 | 0.0 | - | | 11.2676 | 12000 | 0.0 | - | | 11.3146 | 12050 | 0.0 | - | | 11.3615 | 12100 | 0.0 | - | | 11.4085 | 12150 | 0.0 | - | | 11.4554 | 12200 | 0.0 | - | | 11.5023 | 12250 | 0.0015 | - | | 11.5493 | 12300 | 0.0 | - | | 11.5962 | 12350 | 0.0 | - | | 11.6432 | 12400 | 0.0 | - | | 11.6901 | 12450 | 0.0 | - | | 11.7371 | 12500 | 0.0 | - | | 11.7840 | 12550 | 0.0002 | - | | 11.8310 | 12600 | 0.0 | - | | 11.8779 | 12650 | 0.0 | - | | 11.9249 | 12700 | 0.0 | - | | 11.9718 | 12750 | 0.0001 | - | | 12.0188 | 12800 | 0.0 | - | | 12.0657 | 12850 | 0.0 | - | | 12.1127 | 12900 | 0.0 | - | | 12.1596 | 12950 | 0.0001 | - | | 12.2066 | 13000 | 0.0001 | - | | 12.2535 | 13050 | 0.0 | - | | 12.3005 | 13100 | 0.0 | - | | 12.3474 | 13150 | 0.0001 | - | | 12.3944 | 13200 | 0.0 | - | | 12.4413 | 13250 | 0.0 | - | | 12.4883 | 13300 | 0.0 | - | | 12.5352 | 13350 | 0.0 | - | | 12.5822 | 13400 | 0.0 | - | | 12.6291 | 13450 | 0.0 | - | | 12.6761 | 13500 | 0.0 | - | | 12.7230 | 13550 | 0.0 | - | | 12.7700 | 13600 | 0.0 | - | | 12.8169 | 13650 | 0.0 | - | | 12.8638 | 13700 | 0.0 | - | | 12.9108 | 13750 | 0.0 | - | | 12.9577 | 13800 | 0.0 | - | | 13.0047 | 13850 | 0.0 | - | | 13.0516 | 13900 | 0.0 | - | | 13.0986 | 13950 | 0.0 | - | | 13.1455 | 14000 | 0.0 | - | | 13.1925 | 14050 | 0.0 | - | | 13.2394 | 14100 | 0.0 | - | | 13.2864 | 14150 | 0.0 | - | | 13.3333 | 14200 | 0.0 | - | | 13.3803 | 14250 | 0.0 | - | | 13.4272 | 14300 | 0.0 | - | | 13.4742 | 14350 | 0.0 | - | | 13.5211 | 14400 | 0.0 | - | | 13.5681 | 14450 | 0.0 | - | | 13.6150 | 14500 | 0.0 | - | | 13.6620 | 14550 | 0.0 | - | | 13.7089 | 14600 | 0.0 | - | | 13.7559 | 14650 | 0.0 | - | | 13.8028 | 14700 | 0.0 | - | | 13.8498 | 14750 | 0.0 | - | | 13.8967 | 14800 | 0.0 | - | | 13.9437 | 14850 | 0.0 | - | | 13.9906 | 14900 | 0.0 | - | | 14.0376 | 14950 | 0.0 | - | | 14.0845 | 15000 | 0.0 | - | | 14.1315 | 15050 | 0.0 | - | | 14.1784 | 15100 | 0.0001 | - | | 14.2254 | 15150 | 0.0 | - | | 14.2723 | 15200 | 0.0 | - | | 14.3192 | 15250 | 0.0 | - | | 14.3662 | 15300 | 0.0 | - | | 14.4131 | 15350 | 0.0 | - | | 14.4601 | 15400 | 0.0 | - | | 14.5070 | 15450 | 0.0 | - | | 14.5540 | 15500 | 0.0 | - | | 14.6009 | 15550 | 0.0 | - | | 14.6479 | 15600 | 0.0 | - | | 14.6948 | 15650 | 0.0 | - | | 14.7418 | 15700 | 0.0 | - | | 14.7887 | 15750 | 0.0 | - | | 14.8357 | 15800 | 0.0 | - | | 14.8826 | 15850 | 0.0 | - | | 14.9296 | 15900 | 0.0 | - | | 14.9765 | 15950 | 0.0 | - | | 15.0235 | 16000 | 0.0 | - | | 15.0704 | 16050 | 0.0 | - | | 15.1174 | 16100 | 0.0 | - | | 15.1643 | 16150 | 0.0 | - | | 15.2113 | 16200 | 0.0 | - | | 15.2582 | 16250 | 0.0 | - | | 15.3052 | 16300 | 0.0 | - | | 15.3521 | 16350 | 0.0 | - | | 15.3991 | 16400 | 0.0 | - | | 15.4460 | 16450 | 0.0 | - | | 15.4930 | 16500 | 0.0 | - | | 15.5399 | 16550 | 0.0 | - | | 15.5869 | 16600 | 0.0 | - | | 15.6338 | 16650 | 0.0 | - | | 15.6808 | 16700 | 0.0 | - | | 15.7277 | 16750 | 0.0 | - | | 15.7746 | 16800 | 0.0 | - | | 15.8216 | 16850 | 0.0 | - | | 15.8685 | 16900 | 0.0 | - | | 15.9155 | 16950 | 0.0 | - | | 15.9624 | 17000 | 0.0 | - | | 16.0094 | 17050 | 0.0 | - | | 16.0563 | 17100 | 0.0 | - | | 16.1033 | 17150 | 0.0 | - | | 16.1502 | 17200 | 0.0 | - | | 16.1972 | 17250 | 0.0 | - | | 16.2441 | 17300 | 0.0 | - | | 16.2911 | 17350 | 0.0 | - | | 16.3380 | 17400 | 0.0 | - | | 16.3850 | 17450 | 0.0 | - | | 16.4319 | 17500 | 0.0 | - | | 16.4789 | 17550 | 0.0 | - | | 16.5258 | 17600 | 0.0 | - | | 16.5728 | 17650 | 0.0 | - | | 16.6197 | 17700 | 0.0 | - | | 16.6667 | 17750 | 0.0 | - | | 16.7136 | 17800 | 0.0 | - | | 16.7606 | 17850 | 0.0 | - | | 16.8075 | 17900 | 0.0 | - | | 16.8545 | 17950 | 0.0 | - | | 16.9014 | 18000 | 0.0 | - | | 16.9484 | 18050 | 0.0 | - | | 16.9953 | 18100 | 0.0 | - | | 17.0423 | 18150 | 0.0 | - | | 17.0892 | 18200 | 0.0 | - | | 17.1362 | 18250 | 0.0 | - | | 17.1831 | 18300 | 0.0 | - | | 17.2300 | 18350 | 0.0 | - | | 17.2770 | 18400 | 0.0 | - | | 17.3239 | 18450 | 0.0 | - | | 17.3709 | 18500 | 0.0 | - | | 17.4178 | 18550 | 0.0 | - | | 17.4648 | 18600 | 0.0 | - | | 17.5117 | 18650 | 0.0 | - | | 17.5587 | 18700 | 0.0 | - | | 17.6056 | 18750 | 0.0 | - | | 17.6526 | 18800 | 0.0 | - | | 17.6995 | 18850 | 0.0 | - | | 17.7465 | 18900 | 0.0 | - | | 17.7934 | 18950 | 0.0 | - | | 17.8404 | 19000 | 0.0 | - | | 17.8873 | 19050 | 0.0 | - | | 17.9343 | 19100 | 0.0 | - | | 17.9812 | 19150 | 0.0 | - | | 18.0282 | 19200 | 0.0 | - | | 18.0751 | 19250 | 0.0 | - | | 18.1221 | 19300 | 0.0 | - | | 18.1690 | 19350 | 0.0 | - | | 18.2160 | 19400 | 0.0 | - | | 18.2629 | 19450 | 0.0 | - | | 18.3099 | 19500 | 0.0 | - | | 18.3568 | 19550 | 0.0 | - | | 18.4038 | 19600 | 0.0 | - | | 18.4507 | 19650 | 0.0 | - | | 18.4977 | 19700 | 0.0 | - | | 18.5446 | 19750 | 0.0 | - | | 18.5915 | 19800 | 0.0 | - | | 18.6385 | 19850 | 0.0 | - | | 18.6854 | 19900 | 0.0 | - | | 18.7324 | 19950 | 0.0 | - | | 18.7793 | 20000 | 0.0 | - | | 18.8263 | 20050 | 0.0 | - | | 18.8732 | 20100 | 0.0 | - | | 18.9202 | 20150 | 0.0 | - | | 18.9671 | 20200 | 0.0 | - | | 19.0141 | 20250 | 0.0 | - | | 19.0610 | 20300 | 0.0 | - | | 19.1080 | 20350 | 0.0 | - | | 19.1549 | 20400 | 0.0 | - | | 19.2019 | 20450 | 0.0 | - | | 19.2488 | 20500 | 0.0 | - | | 19.2958 | 20550 | 0.0 | - | | 19.3427 | 20600 | 0.0 | - | | 19.3897 | 20650 | 0.0 | - | | 19.4366 | 20700 | 0.0 | - | | 19.4836 | 20750 | 0.0 | - | | 19.5305 | 20800 | 0.0 | - | | 19.5775 | 20850 | 0.0 | - | | 19.6244 | 20900 | 0.0 | - | | 19.6714 | 20950 | 0.0 | - | | 19.7183 | 21000 | 0.0 | - | | 19.7653 | 21050 | 0.0 | - | | 19.8122 | 21100 | 0.0 | - | | 19.8592 | 21150 | 0.0 | - | | 19.9061 | 21200 | 0.0 | - | | 19.9531 | 21250 | 0.0 | - | | 20.0 | 21300 | 0.0 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.1.0.dev0 - Sentence Transformers: 3.1.1 - Transformers: 4.46.1 - PyTorch: 2.4.0+cu121 - Datasets: 2.20.0 - Tokenizers: 0.20.0 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```