mini1013 commited on
Commit
d0de333
·
verified ·
1 Parent(s): f185af3

Push model using huggingface_hub.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,381 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: klue/roberta-base
3
+ library_name: setfit
4
+ metrics:
5
+ - metric
6
+ pipeline_tag: text-classification
7
+ tags:
8
+ - setfit
9
+ - sentence-transformers
10
+ - text-classification
11
+ - generated_from_setfit_trainer
12
+ widget:
13
+ - text: 동구밭 올바른 린스바 극손상용 100g 린스바 2개입 (주) 동구밭
14
+ - text: Burt’s Bees 홀리데이 선물 세트 옵션없음 샵인프랑
15
+ - text: (2024년 수입품) 뭄 왁싱 클래식 제모 12oz MOOM classic TeaTree 옵션없음 영화실업
16
+ - text: 볼라욘 스피넴 파우더500g(모델링 마스크)+샘플+팩도구세트 옵션없음 수애
17
+ - text: 각질제거 4종 큐티클 세트 패디블레이드 손발톱 5W8BE42924 패디knife 4종세트 주도매
18
+ inference: true
19
+ model-index:
20
+ - name: SetFit with klue/roberta-base
21
+ results:
22
+ - task:
23
+ type: text-classification
24
+ name: Text Classification
25
+ dataset:
26
+ name: Unknown
27
+ type: unknown
28
+ split: test
29
+ metrics:
30
+ - type: metric
31
+ value: 0.8872727272727273
32
+ name: Metric
33
+ ---
34
+
35
+ # SetFit with klue/roberta-base
36
+
37
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [klue/roberta-base](https://huggingface.co/klue/roberta-base) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
38
+
39
+ The model has been trained using an efficient few-shot learning technique that involves:
40
+
41
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
42
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
43
+
44
+ ## Model Details
45
+
46
+ ### Model Description
47
+ - **Model Type:** SetFit
48
+ - **Sentence Transformer body:** [klue/roberta-base](https://huggingface.co/klue/roberta-base)
49
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
50
+ - **Maximum Sequence Length:** 512 tokens
51
+ - **Number of Classes:** 13 classes
52
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
53
+ <!-- - **Language:** Unknown -->
54
+ <!-- - **License:** Unknown -->
55
+
56
+ ### Model Sources
57
+
58
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
59
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
60
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
61
+
62
+ ### Model Labels
63
+ | Label | Examples |
64
+ |:------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
65
+ | 0 | <ul><li>'헤라 옴므 에센스 인 2종 단품세트 옵션없음 리앤햇'</li><li>'크리니크 포 맨 수퍼 에너자이저 안티-퍼티그 디퍼핑 아이 젤 15ml 1개 옵션없음 리틀리아'</li><li>'네오젠 브이 바이옴 퍼밍 크림 60g 1개 옵션없음 건강드림'</li></ul> |
66
+ | 8 | <ul><li>'디오디너리 나이아신아마이드 10% + 징크 1% 60ml 9660115 옵션없음 비티엘파트너'</li><li>'피지오겔 레드 수딩 AI 로션 200ml 1021824 50ml 비매품 x4개-200ml 50ml 비매품 x4개-200ml 메가랜드'</li><li>'넘버즈인 시카 갈아만든 초록패드 70매 옵션없음 다물다선'</li></ul> |
67
+ | 1 | <ul><li>'158408 플라워 손톱깎이 세트 중 6종 제작 판촉 홍보 200개이상 제작가능/인쇄비 별도문의 기프트오후'</li><li>'요거트젤네일 시럽젤 버니츄 10종 단품+오스트리아 네일스톤 2EA Syrup58(스카이츄) 코코네일 아울렛'</li><li>'임페리얼 네일드릴더쎈 전용 고급아크릭 케이스 정리함 옵션없음 임페리얼'</li></ul> |
68
+ | 5 | <ul><li>'여드릅 뾰루지 관리 압출기 의료용 피지제 핀셋 거기 바늘 세트 11종 미용 짜는도구 옵션없음 호담컴퍼니'</li><li>'가열 전기 휴대용 빗 속눈썹 컬 파마 오래 지속되는 열 메이크업 1 5 개 Pink 2pcs 리마112'</li><li>'스테인리스 스틸 눈썹 족집게 다채로운 헤어 미세 모발 풀러 제거 Sky blue 4PCS 더블유파트너스P'</li></ul> |
69
+ | 10 | <ul><li>'에르메스 르 자르뎅 드 무슈 리 우먼 오드뚜왈렛 100ml 옵션없음 트랜드퍼퓸'</li><li>'캐롤 앤 챈 - 미니 디퓨저 - 레드 로즈 (프레쉬 로즈 & 아시안 우드) 20ml 스트로베리넷 (홍콩)'</li><li>'아카 카파 - 화이트 무화과 & 시더우드 홈 디퓨저 250ml/8.25oz 스트로베리넷 (홍콩)'</li></ul> |
70
+ | 12 | <ul><li>'닥터모리엔 헤어 토닉 100ml 150ml(가성비 대용량 출시) 주식회사 폴라인터내셔널'</li><li>'닥터멜락신 본덱스 단백질 결합 리모델링 클리닉 옵션없음 영주수'</li><li>'[정식수입통관상품] 에르메스 호텔 어메니티 5종 트래블킷 오도렌지베르테 옵션없음 유니스타'</li></ul> |
71
+ | 3 | <ul><li>'Love from Santa Barbara 콤팩트 퍼스널 와일드 로즈 솔리드 향수 그녀를 위한 고급 장인 스파 선물 편리하고, 지갑이나 여행 가방에 들어갈 수 있다 옵션없음 캘리마트'</li><li>'[대구백화점] [더바디샵]슬립 릴렉싱 마사지 오일 100ML 옵션없음 (주)대구백화점 대백프라자'</li><li>'솔트 샤워 오일 350ml 단품 2KIT 솔티앤코(Saltea and Co.)'</li></ul> |
72
+ | 7 | <ul><li>'넛세린 시카 넛 카밍 선스틱 18g 1개 (민감성, SPF50+) HI 옵션없음 주식회사 호인인터내셔널'</li><li>'[NEW] 최대 45% / 달바 비건 프레쉬 선쿠션 15g [세트] 선쿠션 15g(2개) 주식회사 달바글로벌'</li><li>'엠퀴리 코어 선 젤 50ml + 선스틱 18g 2종세트'</li></ul> |
73
+ | 11 | <ul><li>'프로스펙터스 아이언 오레 포마드 수성 113g 1개(397g)콜마인 COME BY'</li><li>'아뉴 남자 셀프 옆머리 뒷머리 누르기 다운펌 밴드 기계 다운펌제 펌약 3개 옵션없음 지엘디'</li><li>'메온셀 아오모리 대용량 다운펌 1000ml 셀프다운펌 미용실 뜨는 옆머리 아오모리 대용량 다운펌 1000ml 셀프다운펌 구매확정몰'</li></ul> |
74
+ | 4 | <ul><li>'스칸스킨 한 겹 톤업크림 메이크업베이스 SPF30+, PA++ 45ml 옵션없음 (주) 오퍼스아시아'</li><li>'력과 잡는 동시에 지속성을 트윈케익 21호 커버 옵션없음 소쿠리의잡화점'</li><li>'키핀터치 NEW 라벤더 컬러 출시 모공지우개 파우더 10g 2type (택1) 모공지우개 파우더 (백색) 10g 캐치세컨'</li></ul> |
75
+ | 2 | <ul><li>'마리에 뱀독 에센스 마스크 10매 옵션없음 또옴1'</li><li>'장영란 아기코세트 멜팅클리어패드 30매 + 모공앰플 30ml 옵션없음 세일러15'</li><li>'올리브영 케어플러스 상처커버 스팟패치 102매 (5개) 옵션없음 다원샵앤샵'</li></ul> |
76
+ | 6 | <ul><li>'삐아 오버 글레이즈 01 피치당 1개 옵션없음 밤구시'</li><li>'올리브영 클리오 벨벳 립 펜슬 + 샤프너 03 커피 브라운 옵션없음 비바글로우'</li><li>'바비브라운 립밤 15g (SPF15) 옵션없음 원쇼핑'</li></ul> |
77
+ | 9 | <ul><li>'더마큐어마스터원샷클렌저 200ml 1개 옵션없음 주식회사 밀레'</li><li>'미샤 수퍼아쿠아 울트라 히알론 필링젤 미샤 수퍼아쿠아_울트라 히알론 필링젤 유민코스'</li><li>'바이오더마 세비엄 H2O 500ml 옵션없음 비티엘파트너'</li></ul> |
78
+
79
+ ## Evaluation
80
+
81
+ ### Metrics
82
+ | Label | Metric |
83
+ |:--------|:-------|
84
+ | **all** | 0.8873 |
85
+
86
+ ## Uses
87
+
88
+ ### Direct Use for Inference
89
+
90
+ First install the SetFit library:
91
+
92
+ ```bash
93
+ pip install setfit
94
+ ```
95
+
96
+ Then you can load this model and run inference.
97
+
98
+ ```python
99
+ from setfit import SetFitModel
100
+
101
+ # Download from the 🤗 Hub
102
+ model = SetFitModel.from_pretrained("mini1013/master_item_bt_setfit")
103
+ # Run inference
104
+ preds = model("Burt’s Bees 홀리데이 선물 세트 옵션없음 샵인프랑")
105
+ ```
106
+
107
+ <!--
108
+ ### Downstream Use
109
+
110
+ *List how someone could finetune this model on their own dataset.*
111
+ -->
112
+
113
+ <!--
114
+ ### Out-of-Scope Use
115
+
116
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
117
+ -->
118
+
119
+ <!--
120
+ ## Bias, Risks and Limitations
121
+
122
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
123
+ -->
124
+
125
+ <!--
126
+ ### Recommendations
127
+
128
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
129
+ -->
130
+
131
+ ## Training Details
132
+
133
+ ### Training Set Metrics
134
+ | Training set | Min | Median | Max |
135
+ |:-------------|:----|:-------|:----|
136
+ | Word count | 3 | 9.8072 | 33 |
137
+
138
+ | Label | Training Sample Count |
139
+ |:------|:----------------------|
140
+ | 0 | 1229 |
141
+ | 1 | 559 |
142
+ | 2 | 654 |
143
+ | 3 | 1528 |
144
+ | 4 | 563 |
145
+ | 5 | 677 |
146
+ | 6 | 1157 |
147
+ | 7 | 563 |
148
+ | 8 | 1037 |
149
+ | 9 | 1034 |
150
+ | 10 | 219 |
151
+ | 11 | 544 |
152
+ | 12 | 671 |
153
+
154
+ ### Training Hyperparameters
155
+ - batch_size: (512, 512)
156
+ - num_epochs: (10, 10)
157
+ - max_steps: -1
158
+ - sampling_strategy: oversampling
159
+ - num_iterations: 20
160
+ - body_learning_rate: (2e-05, 2e-05)
161
+ - head_learning_rate: 2e-05
162
+ - loss: CosineSimilarityLoss
163
+ - distance_metric: cosine_distance
164
+ - margin: 0.25
165
+ - end_to_end: False
166
+ - use_amp: False
167
+ - warmup_proportion: 0.1
168
+ - seed: 42
169
+ - eval_max_steps: -1
170
+ - load_best_model_at_end: False
171
+
172
+ ### Training Results
173
+ | Epoch | Step | Training Loss | Validation Loss |
174
+ |:------:|:----:|:-------------:|:---------------:|
175
+ | 0.0012 | 1 | 0.3181 | - |
176
+ | 0.0613 | 50 | 0.2442 | - |
177
+ | 0.1225 | 100 | 0.2202 | - |
178
+ | 0.1838 | 150 | 0.2027 | - |
179
+ | 0.2451 | 200 | 0.194 | - |
180
+ | 0.3064 | 250 | 0.1582 | - |
181
+ | 0.3676 | 300 | 0.1369 | - |
182
+ | 0.4289 | 350 | 0.1328 | - |
183
+ | 0.4902 | 400 | 0.1131 | - |
184
+ | 0.5515 | 450 | 0.0927 | - |
185
+ | 0.6127 | 500 | 0.0812 | - |
186
+ | 0.6740 | 550 | 0.0617 | - |
187
+ | 0.7353 | 600 | 0.0691 | - |
188
+ | 0.7966 | 650 | 0.063 | - |
189
+ | 0.8578 | 700 | 0.0404 | - |
190
+ | 0.9191 | 750 | 0.0336 | - |
191
+ | 0.9804 | 800 | 0.0305 | - |
192
+ | 1.0417 | 850 | 0.0276 | - |
193
+ | 1.1029 | 900 | 0.0232 | - |
194
+ | 1.1642 | 950 | 0.0135 | - |
195
+ | 1.2255 | 1000 | 0.0104 | - |
196
+ | 1.2868 | 1050 | 0.0091 | - |
197
+ | 1.3480 | 1100 | 0.005 | - |
198
+ | 1.4093 | 1150 | 0.0055 | - |
199
+ | 1.4706 | 1200 | 0.0087 | - |
200
+ | 1.5319 | 1250 | 0.0094 | - |
201
+ | 1.5931 | 1300 | 0.0039 | - |
202
+ | 1.6544 | 1350 | 0.0026 | - |
203
+ | 1.7157 | 1400 | 0.0039 | - |
204
+ | 1.7770 | 1450 | 0.0023 | - |
205
+ | 1.8382 | 1500 | 0.0074 | - |
206
+ | 1.8995 | 1550 | 0.0027 | - |
207
+ | 1.9608 | 1600 | 0.0029 | - |
208
+ | 2.0221 | 1650 | 0.0008 | - |
209
+ | 2.0833 | 1700 | 0.004 | - |
210
+ | 2.1446 | 1750 | 0.0011 | - |
211
+ | 2.2059 | 1800 | 0.0036 | - |
212
+ | 2.2672 | 1850 | 0.0002 | - |
213
+ | 2.3284 | 1900 | 0.0016 | - |
214
+ | 2.3897 | 1950 | 0.0018 | - |
215
+ | 2.4510 | 2000 | 0.0009 | - |
216
+ | 2.5123 | 2050 | 0.0012 | - |
217
+ | 2.5735 | 2100 | 0.0005 | - |
218
+ | 2.6348 | 2150 | 0.0013 | - |
219
+ | 2.6961 | 2200 | 0.0003 | - |
220
+ | 2.7574 | 2250 | 0.0006 | - |
221
+ | 2.8186 | 2300 | 0.0006 | - |
222
+ | 2.8799 | 2350 | 0.0006 | - |
223
+ | 2.9412 | 2400 | 0.0013 | - |
224
+ | 3.0025 | 2450 | 0.0011 | - |
225
+ | 3.0637 | 2500 | 0.0011 | - |
226
+ | 3.125 | 2550 | 0.0003 | - |
227
+ | 3.1863 | 2600 | 0.0018 | - |
228
+ | 3.2475 | 2650 | 0.0003 | - |
229
+ | 3.3088 | 2700 | 0.0008 | - |
230
+ | 3.3701 | 2750 | 0.001 | - |
231
+ | 3.4314 | 2800 | 0.0002 | - |
232
+ | 3.4926 | 2850 | 0.0002 | - |
233
+ | 3.5539 | 2900 | 0.0001 | - |
234
+ | 3.6152 | 2950 | 0.0005 | - |
235
+ | 3.6765 | 3000 | 0.0001 | - |
236
+ | 3.7377 | 3050 | 0.0002 | - |
237
+ | 3.7990 | 3100 | 0.0014 | - |
238
+ | 3.8603 | 3150 | 0.0012 | - |
239
+ | 3.9216 | 3200 | 0.0003 | - |
240
+ | 3.9828 | 3250 | 0.0018 | - |
241
+ | 4.0441 | 3300 | 0.0007 | - |
242
+ | 4.1054 | 3350 | 0.0001 | - |
243
+ | 4.1667 | 3400 | 0.0001 | - |
244
+ | 4.2279 | 3450 | 0.0002 | - |
245
+ | 4.2892 | 3500 | 0.0001 | - |
246
+ | 4.3505 | 3550 | 0.0001 | - |
247
+ | 4.4118 | 3600 | 0.0001 | - |
248
+ | 4.4730 | 3650 | 0.0001 | - |
249
+ | 4.5343 | 3700 | 0.0002 | - |
250
+ | 4.5956 | 3750 | 0.0001 | - |
251
+ | 4.6569 | 3800 | 0.001 | - |
252
+ | 4.7181 | 3850 | 0.0009 | - |
253
+ | 4.7794 | 3900 | 0.0002 | - |
254
+ | 4.8407 | 3950 | 0.0013 | - |
255
+ | 4.9020 | 4000 | 0.0002 | - |
256
+ | 4.9632 | 4050 | 0.0003 | - |
257
+ | 5.0245 | 4100 | 0.0001 | - |
258
+ | 5.0858 | 4150 | 0.0003 | - |
259
+ | 5.1471 | 4200 | 0.0001 | - |
260
+ | 5.2083 | 4250 | 0.0001 | - |
261
+ | 5.2696 | 4300 | 0.0001 | - |
262
+ | 5.3309 | 4350 | 0.0001 | - |
263
+ | 5.3922 | 4400 | 0.0001 | - |
264
+ | 5.4534 | 4450 | 0.0001 | - |
265
+ | 5.5147 | 4500 | 0.0014 | - |
266
+ | 5.5760 | 4550 | 0.0002 | - |
267
+ | 5.6373 | 4600 | 0.0001 | - |
268
+ | 5.6985 | 4650 | 0.0001 | - |
269
+ | 5.7598 | 4700 | 0.0001 | - |
270
+ | 5.8211 | 4750 | 0.0001 | - |
271
+ | 5.8824 | 4800 | 0.0001 | - |
272
+ | 5.9436 | 4850 | 0.0002 | - |
273
+ | 6.0049 | 4900 | 0.0001 | - |
274
+ | 6.0662 | 4950 | 0.0002 | - |
275
+ | 6.1275 | 5000 | 0.0001 | - |
276
+ | 6.1887 | 5050 | 0.0001 | - |
277
+ | 6.25 | 5100 | 0.0001 | - |
278
+ | 6.3113 | 5150 | 0.0001 | - |
279
+ | 6.3725 | 5200 | 0.0 | - |
280
+ | 6.4338 | 5250 | 0.0 | - |
281
+ | 6.4951 | 5300 | 0.0001 | - |
282
+ | 6.5564 | 5350 | 0.0001 | - |
283
+ | 6.6176 | 5400 | 0.0 | - |
284
+ | 6.6789 | 5450 | 0.0001 | - |
285
+ | 6.7402 | 5500 | 0.0007 | - |
286
+ | 6.8015 | 5550 | 0.0001 | - |
287
+ | 6.8627 | 5600 | 0.0001 | - |
288
+ | 6.9240 | 5650 | 0.0 | - |
289
+ | 6.9853 | 5700 | 0.0 | - |
290
+ | 7.0466 | 5750 | 0.0 | - |
291
+ | 7.1078 | 5800 | 0.0001 | - |
292
+ | 7.1691 | 5850 | 0.0001 | - |
293
+ | 7.2304 | 5900 | 0.0 | - |
294
+ | 7.2917 | 5950 | 0.0 | - |
295
+ | 7.3529 | 6000 | 0.0 | - |
296
+ | 7.4142 | 6050 | 0.0001 | - |
297
+ | 7.4755 | 6100 | 0.0002 | - |
298
+ | 7.5368 | 6150 | 0.0 | - |
299
+ | 7.5980 | 6200 | 0.0003 | - |
300
+ | 7.6593 | 6250 | 0.0 | - |
301
+ | 7.7206 | 6300 | 0.0 | - |
302
+ | 7.7819 | 6350 | 0.0 | - |
303
+ | 7.8431 | 6400 | 0.001 | - |
304
+ | 7.9044 | 6450 | 0.0 | - |
305
+ | 7.9657 | 6500 | 0.0001 | - |
306
+ | 8.0270 | 6550 | 0.0001 | - |
307
+ | 8.0882 | 6600 | 0.0 | - |
308
+ | 8.1495 | 6650 | 0.0 | - |
309
+ | 8.2108 | 6700 | 0.0002 | - |
310
+ | 8.2721 | 6750 | 0.0 | - |
311
+ | 8.3333 | 6800 | 0.0001 | - |
312
+ | 8.3946 | 6850 | 0.0 | - |
313
+ | 8.4559 | 6900 | 0.0 | - |
314
+ | 8.5172 | 6950 | 0.0 | - |
315
+ | 8.5784 | 7000 | 0.0 | - |
316
+ | 8.6397 | 7050 | 0.0 | - |
317
+ | 8.7010 | 7100 | 0.0 | - |
318
+ | 8.7623 | 7150 | 0.0 | - |
319
+ | 8.8235 | 7200 | 0.0 | - |
320
+ | 8.8848 | 7250 | 0.0 | - |
321
+ | 8.9461 | 7300 | 0.0 | - |
322
+ | 9.0074 | 7350 | 0.0 | - |
323
+ | 9.0686 | 7400 | 0.0 | - |
324
+ | 9.1299 | 7450 | 0.0 | - |
325
+ | 9.1912 | 7500 | 0.0002 | - |
326
+ | 9.2525 | 7550 | 0.0 | - |
327
+ | 9.3137 | 7600 | 0.0 | - |
328
+ | 9.375 | 7650 | 0.0 | - |
329
+ | 9.4363 | 7700 | 0.0 | - |
330
+ | 9.4975 | 7750 | 0.0 | - |
331
+ | 9.5588 | 7800 | 0.0 | - |
332
+ | 9.6201 | 7850 | 0.0 | - |
333
+ | 9.6814 | 7900 | 0.0 | - |
334
+ | 9.7426 | 7950 | 0.0 | - |
335
+ | 9.8039 | 8000 | 0.0 | - |
336
+ | 9.8652 | 8050 | 0.0 | - |
337
+ | 9.9265 | 8100 | 0.0 | - |
338
+ | 9.9877 | 8150 | 0.0001 | - |
339
+
340
+ ### Framework Versions
341
+ - Python: 3.10.12
342
+ - SetFit: 1.1.0.dev0
343
+ - Sentence Transformers: 3.1.1
344
+ - Transformers: 4.45.1
345
+ - PyTorch: 2.4.0+cu121
346
+ - Datasets: 2.20.0
347
+ - Tokenizers: 0.20.0
348
+
349
+ ## Citation
350
+
351
+ ### BibTeX
352
+ ```bibtex
353
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
354
+ doi = {10.48550/ARXIV.2209.11055},
355
+ url = {https://arxiv.org/abs/2209.11055},
356
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
357
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
358
+ title = {Efficient Few-Shot Learning Without Prompts},
359
+ publisher = {arXiv},
360
+ year = {2022},
361
+ copyright = {Creative Commons Attribution 4.0 International}
362
+ }
363
+ ```
364
+
365
+ <!--
366
+ ## Glossary
367
+
368
+ *Clearly define terms in order to be accessible across audiences.*
369
+ -->
370
+
371
+ <!--
372
+ ## Model Card Authors
373
+
374
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
375
+ -->
376
+
377
+ <!--
378
+ ## Model Card Contact
379
+
380
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
381
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "klue/roberta-base",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "tokenizer_class": "BertTokenizer",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.45.1",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 32000
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.45.1",
5
+ "pytorch": "2.4.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "normalize_embeddings": false,
3
+ "labels": null
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0ffc1e0cca9dff85a467053fee5c93a5f8d47842f8afcca0e8589b7d94ca7ad9
3
+ size 442494816
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a13db689d8292d3596b8cbd6ddb23ef1d647af17de0d152cea0e94b0f276ba56
3
+ size 80927
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "[SEP]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "[MASK]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "[SEP]",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[CLS]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[PAD]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "[CLS]",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": false,
49
+ "eos_token": "[SEP]",
50
+ "mask_token": "[MASK]",
51
+ "model_max_length": 512,
52
+ "never_split": null,
53
+ "pad_token": "[PAD]",
54
+ "sep_token": "[SEP]",
55
+ "strip_accents": null,
56
+ "tokenize_chinese_chars": true,
57
+ "tokenizer_class": "BertTokenizer",
58
+ "unk_token": "[UNK]"
59
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff