mini1013 commited on
Commit
e2dd2ce
·
verified ·
1 Parent(s): 8b0765e

Push model using huggingface_hub.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,1372 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - setfit
4
+ - sentence-transformers
5
+ - text-classification
6
+ - generated_from_setfit_trainer
7
+ widget:
8
+ - text: 고급누빔포인트방석커버 면방석 가구/인테리어>홈데코>쿠션/방석>방석커버
9
+ - text: PVC Terrazzo 방수 자체 접착 벽지 침실 벽 거실 장식 비닐 가구 접촉 용지 가구/인테리어>DIY자재/용품>벽지>띠벽지
10
+ - text: 클레마티스 오로라화병 가구/인테리어>인테리어소품>화병
11
+ - text: 나비장 고가구 클래식 공예 금박 은박 콘솔 수납장 가구/인테리어>수납가구>나비장
12
+ - text: 선반 받침대 테이블 책상 책장 프린터 철제 수납장 컴퓨터 정리 가구/인테리어>서재/사무용가구>책상>책상소품
13
+ metrics:
14
+ - accuracy
15
+ pipeline_tag: text-classification
16
+ library_name: setfit
17
+ inference: true
18
+ base_model: klue/roberta-base
19
+ model-index:
20
+ - name: SetFit with klue/roberta-base
21
+ results:
22
+ - task:
23
+ type: text-classification
24
+ name: Text Classification
25
+ dataset:
26
+ name: Unknown
27
+ type: unknown
28
+ split: test
29
+ metrics:
30
+ - type: accuracy
31
+ value: 1.0
32
+ name: Accuracy
33
+ ---
34
+
35
+ # SetFit with klue/roberta-base
36
+
37
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [klue/roberta-base](https://huggingface.co/klue/roberta-base) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
38
+
39
+ The model has been trained using an efficient few-shot learning technique that involves:
40
+
41
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
42
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
43
+
44
+ ## Model Details
45
+
46
+ ### Model Description
47
+ - **Model Type:** SetFit
48
+ - **Sentence Transformer body:** [klue/roberta-base](https://huggingface.co/klue/roberta-base)
49
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
50
+ - **Maximum Sequence Length:** 512 tokens
51
+ - **Number of Classes:** 17 classes
52
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
53
+ <!-- - **Language:** Unknown -->
54
+ <!-- - **License:** Unknown -->
55
+
56
+ ### Model Sources
57
+
58
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
59
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
60
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
61
+
62
+ ### Model Labels
63
+ | Label | Examples |
64
+ |:------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
65
+ | 0.0 | <ul><li>'축사 난방 판넬 송아지 애완견 개집 전기 열선 가열 -미디엄 가구/인테리어>DIY자재/용품>바닥재>필름난방'</li><li>'냉장고 시트지 리폼 필름지 싱크대 에어컨 더블 도어 스티커 가구/인테리어>DIY자재/용품>시트지>단색시트지'</li><li>'이코리브 사각형 전선 정리 몰딩 쫄대 1M 1P 학원 가구/인테리어>DIY자재/용품>몰딩'</li></ul> |
66
+ | 14.0 | <ul><li>'홈메이드 보드라운 비정형 러그 거실 카페트 매트 캐시미어 82번 LINE 가구/인테리어>카페트/러그>러그'</li><li>'테라스꾸미기 캠핑용매트 발판매트 월컴 가구/인테리어>카페트/러그>발매트'</li><li>'러그 발매트 화장실 현관 침실 주방 주방매트 대형 미끄럼방지 캠핑 PVC 가구/인테리어>카페트/러그>발매트'</li></ul> |
67
+ | 9.0 | <ul><li>'소화기 안내 아크릴 디자인 표지판 문패 가구/인테리어>인테리어소품>디자인문패'</li><li>'우체통 유럽 철재 전원주택 스탠드 우체통 인테리어 -1 2m 레터 박스 A 가구/인테리어>인테리어소품>우체통'</li><li>'빈티지 우체통 빨간 벽걸이 엔틱 카페 우편함 가구/인테리어>인테리어소품>우체통'</li></ul> |
68
+ | 13.0 | <ul><li>'베스트슬립 M2 올가닉 메달리스트 매트리스 K 가구/인테리어>침실가구>매트리스>킹매트리스'</li><li>'화장대 의자 골드가구 등받이 인테리어 화장대 의자 가구/인테리어>침실가구>화장대>화장대의자'</li><li>'플레인홈 포렐 모던 거실 협탁 580 가구/인테리어>침실가구>협탁'</li></ul> |
69
+ | 6.0 | <ul><li>'패딩 리본 키링 2컬러 가방꾸미기 가꾸 뜨개가방 부자재 가구/인테리어>수예>뜨개질>패키지'</li><li>'어린이집 신체활동 공룡도안 전신 안전거울 아기안전거울 아기 가구/인테리어>수예>퀼트/펠트>도안'</li><li>'5색재봉실 레인보우 컬러 바느질 퀼트 자수 원사 재봉 십자수 공예 가구/인테리어>수예>자수>실/바늘'</li></ul> |
70
+ | 5.0 | <ul><li>'다용도실 베란다 창고 정리 선반 세탁실 선반장 사무실 철제 키큰 가구/인테리어>수납가구>선반'</li><li>'도서 잡지 사무실 분류 보관함 회전 신문 홍보물 전단지 스탠딩 가구/인테리어>수납가구>잡지꽂이'</li><li>'프랑코홈 프랑코 리빙박스 62L 2개 SET 대용량 플라스틱 수납 정리함 FRANCO 가구/인테리어>수납가구>공간박스'</li></ul> |
71
+ | 11.0 | <ul><li>'비비엔다 포르페 냉감 아이싱 맥스 아기 쿨패드 유아특대형 슈퍼싱글 퀸 킹 가구/인테리어>침구단품>패드>싱글/슈퍼싱글패드'</li><li>'매트리스커버높은 방수 토퍼 매트리스 커버 싱글 퀸 가구/인테리어>침구단품>매트/침대커버>싱글/슈퍼싱글침대커버'</li><li>'모던하우스 리아 소프트워싱 차렵이불 Q 가구/인테리어>침구단품>차렵이불'</li></ul> |
72
+ | 1.0 | <ul><li>'데코라인 본테 높은 600 피규어 진열장 DHP006 가구/인테리어>거실가구>장식장'</li><li>'현대의료기 모짜르트 4인 SF 카우치 컴포트 황토숯볼 흙소파 가구/인테리어>거실가구>소파>흙/돌소파'</li><li>'오브민 접이식 폴딩 이동식 노트북 책상800 소파 사이드테이블 가구/인테리어>거실가구>테이블>사이드테이블'</li></ul> |
73
+ | 4.0 | <ul><li>'쿠션 던지기 리넨 베개 커버 귀여운 눈송이 케이스 새해 장식 가구/인테리어>솜류>쿠션솜'</li><li>'바디필로우 대 롱쿠션 캔디솜 더크린 가구/인테리어>솜류>쿠션솜'</li><li>'힐튼 퀼팅베개 계절베개 숙면베개 필로우 29859062 가구/인테리어>솜류>베개솜/속통>거위털/오리털베개솜'</li></ul> |
74
+ | 16.0 | <ul><li>'안고자는인형 대형 고양이 롱 바디필로우 수면 쿠션 모찌 찰떡 가구/인테리어>홈데코>쿠션/방석>대쿠션/대방석'</li><li>'냉감 애견패드 강아지 고양이 쿨매트 듀라론 2P 눕자 40X60 가구/인테리어>홈데코>쿠션/방석>대쿠션/대방석'</li><li>'3개 홀더 스마트폰 bob 거치대 썬바이저 차량용 자동차 가구/인테리어>홈데코>쿠션/방석>팔꿈치/손목쿠션'</li></ul> |
75
+ | 3.0 | <ul><li>'프린터거치대 프린터선반 다이 수납장 테이블 선반 -블랙 3단프레임 가구/인테리어>서재/사무용가구>책상>책상소품'</li><li>'카파맥스 플러스 3단 책꽂이 연두 가구/인테리어>서재/사무용가구>책꽂이'</li><li>'포밍 테이블 1800 사무용 회의실 책상 다용도 작업대 가구/인테리어>서재/사무용가구>사무/교구용가구>회의테이블'</li></ul> |
76
+ | 8.0 | <ul><li>'수영장 썬베드 야외 의자 비치 해변 호텔 펜션 테라스 리조트 침대 가구/인테리어>아웃도어가구>야외의자'</li><li>'평벤치 학교 의자 공원 운동장 야외 휴게소 병원 벤 -1 8m U자형 가구/인테리어>아웃도어가구>야외벤치'</li><li>'야외조립창고 컨테이너 농막수납장 공구보관함 잡화 유형 A 가구/인테리어>아웃도어가구>기타아웃도어가구'</li></ul> |
77
+ | 7.0 | <ul><li>'귀여운 로봇 낮은수납장 깊은 정리 이동식 3단 틈새 가구/인테리어>아동/주니어가구>수납장'</li><li>'엘레아 메리다 800 5단 서랍장 가구/인테리어>아동/주니어가구>서랍장'</li><li>'장바구니 일룸 에디키즈 장난감 정리대 가구/인테리어>아동/주니어가구>수납장'</li></ul> |
78
+ | 15.0 | <ul><li>'창안애 브러쉬 25mm 알루미늄 블라인드 30 x 30 가구/인테리어>커튼/블라인드>블라인드'</li><li>'광목로만쉐이드 작은 동물 커튼 욕실 3D 디지털 침실 구름로만쉐이드 가구/인테리어>커튼/블라인드>로만셰이드'</li><li>'에그박스 2단 슬라이딩 가구/인테리어>커튼/블라인드>로만셰이드'</li></ul> |
79
+ | 12.0 | <ul><li>'마이하우스 알러지케어 스타패치 핑크 키즈 차렵이불 풀세트 S/SS 가구/인테리어>침구세트>매트커버세트>슈퍼싱글매트커버세트'</li><li>'올리비아데코 베리메리 60수 아사 요차렵세트 Q 가구/인테리어>침구세트>요이불세트>2/3인용'</li><li>'레노마홈 스마일워싱 차렵이불 베개세트 Q 사계절 가구/인테리어>침구세트>이불베개세트>슈퍼싱글이불베개세트'</li></ul> |
80
+ | 2.0 | <ul><li>'슬립앤슬립 마스터유닛2 5분할 베개 소프트 LE1215376644 가구/인테리어>베개>메모���폼베개'</li><li>'일자목베개 쿨젤 목편한 숙면 기능성 쿨링 메모리폼 여름 베개 1개 가구/인테리어>베개>메모리폼베개'</li><li>'스패로우 스프링 필로우 메모리폼 베개 가구/인테리어>베개>메모리폼베개'</li></ul> |
81
+ | 10.0 | <ul><li>'라자가구 위드 고메 1600 주방수납장 세트 홈카페형 nk008 가구/인테리어>주방가구>주방수납장'</li><li>'레트로하우스 코케 고무나무 원목 접이식 확장형 식탁 테이블 1600 가구/인테리어>주방가구>식탁/의자>식탁테이블'</li><li>'UNKNOWN 호환 리빙코리아 리빙웰 프리미엄 오븐 석쇠 OV250 가구/인테리어>주방가구>기타주방가구'</li></ul> |
82
+
83
+ ## Evaluation
84
+
85
+ ### Metrics
86
+ | Label | Accuracy |
87
+ |:--------|:---------|
88
+ | **all** | 1.0 |
89
+
90
+ ## Uses
91
+
92
+ ### Direct Use for Inference
93
+
94
+ First install the SetFit library:
95
+
96
+ ```bash
97
+ pip install setfit
98
+ ```
99
+
100
+ Then you can load this model and run inference.
101
+
102
+ ```python
103
+ from setfit import SetFitModel
104
+
105
+ # Download from the 🤗 Hub
106
+ model = SetFitModel.from_pretrained("mini1013/master_item_fi")
107
+ # Run inference
108
+ preds = model("클레마티스 오로라화병 가구/인테리어>인테리어소품>화병")
109
+ ```
110
+
111
+ <!--
112
+ ### Downstream Use
113
+
114
+ *List how someone could finetune this model on their own dataset.*
115
+ -->
116
+
117
+ <!--
118
+ ### Out-of-Scope Use
119
+
120
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
121
+ -->
122
+
123
+ <!--
124
+ ## Bias, Risks and Limitations
125
+
126
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
127
+ -->
128
+
129
+ <!--
130
+ ### Recommendations
131
+
132
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
133
+ -->
134
+
135
+ ## Training Details
136
+
137
+ ### Training Set Metrics
138
+ | Training set | Min | Median | Max |
139
+ |:-------------|:----|:-------|:----|
140
+ | Word count | 2 | 8.9412 | 24 |
141
+
142
+ | Label | Training Sample Count |
143
+ |:------|:----------------------|
144
+ | 0.0 | 980 |
145
+ | 1.0 | 280 |
146
+ | 2.0 | 133 |
147
+ | 3.0 | 350 |
148
+ | 4.0 | 349 |
149
+ | 5.0 | 840 |
150
+ | 6.0 | 490 |
151
+ | 7.0 | 893 |
152
+ | 8.0 | 420 |
153
+ | 9.0 | 1516 |
154
+ | 10.0 | 420 |
155
+ | 11.0 | 890 |
156
+ | 12.0 | 270 |
157
+ | 13.0 | 629 |
158
+ | 14.0 | 402 |
159
+ | 15.0 | 700 |
160
+ | 16.0 | 210 |
161
+
162
+ ### Training Hyperparameters
163
+ - batch_size: (256, 256)
164
+ - num_epochs: (30, 30)
165
+ - max_steps: -1
166
+ - sampling_strategy: oversampling
167
+ - num_iterations: 50
168
+ - body_learning_rate: (2e-05, 1e-05)
169
+ - head_learning_rate: 0.01
170
+ - loss: CosineSimilarityLoss
171
+ - distance_metric: cosine_distance
172
+ - margin: 0.25
173
+ - end_to_end: False
174
+ - use_amp: False
175
+ - warmup_proportion: 0.1
176
+ - l2_weight: 0.01
177
+ - seed: 42
178
+ - eval_max_steps: -1
179
+ - load_best_model_at_end: False
180
+
181
+ ### Training Results
182
+ | Epoch | Step | Training Loss | Validation Loss |
183
+ |:-------:|:-----:|:-------------:|:---------------:|
184
+ | 0.0005 | 1 | 0.4481 | - |
185
+ | 0.0262 | 50 | 0.4495 | - |
186
+ | 0.0524 | 100 | 0.426 | - |
187
+ | 0.0786 | 150 | 0.3955 | - |
188
+ | 0.1048 | 200 | 0.3284 | - |
189
+ | 0.1310 | 250 | 0.2654 | - |
190
+ | 0.1572 | 300 | 0.209 | - |
191
+ | 0.1833 | 350 | 0.1354 | - |
192
+ | 0.2095 | 400 | 0.0875 | - |
193
+ | 0.2357 | 450 | 0.0572 | - |
194
+ | 0.2619 | 500 | 0.0427 | - |
195
+ | 0.2881 | 550 | 0.0289 | - |
196
+ | 0.3143 | 600 | 0.0222 | - |
197
+ | 0.3405 | 650 | 0.0143 | - |
198
+ | 0.3667 | 700 | 0.0101 | - |
199
+ | 0.3929 | 750 | 0.0092 | - |
200
+ | 0.4191 | 800 | 0.0068 | - |
201
+ | 0.4453 | 850 | 0.0066 | - |
202
+ | 0.4715 | 900 | 0.0046 | - |
203
+ | 0.4976 | 950 | 0.0049 | - |
204
+ | 0.5238 | 1000 | 0.0046 | - |
205
+ | 0.5500 | 1050 | 0.0039 | - |
206
+ | 0.5762 | 1100 | 0.0038 | - |
207
+ | 0.6024 | 1150 | 0.0034 | - |
208
+ | 0.6286 | 1200 | 0.0029 | - |
209
+ | 0.6548 | 1250 | 0.0017 | - |
210
+ | 0.6810 | 1300 | 0.0011 | - |
211
+ | 0.7072 | 1350 | 0.0009 | - |
212
+ | 0.7334 | 1400 | 0.0006 | - |
213
+ | 0.7596 | 1450 | 0.0005 | - |
214
+ | 0.7858 | 1500 | 0.0004 | - |
215
+ | 0.8119 | 1550 | 0.0004 | - |
216
+ | 0.8381 | 1600 | 0.0003 | - |
217
+ | 0.8643 | 1650 | 0.0003 | - |
218
+ | 0.8905 | 1700 | 0.0003 | - |
219
+ | 0.9167 | 1750 | 0.0002 | - |
220
+ | 0.9429 | 1800 | 0.0002 | - |
221
+ | 0.9691 | 1850 | 0.0002 | - |
222
+ | 0.9953 | 1900 | 0.0002 | - |
223
+ | 1.0215 | 1950 | 0.0002 | - |
224
+ | 1.0477 | 2000 | 0.0002 | - |
225
+ | 1.0739 | 2050 | 0.0002 | - |
226
+ | 1.1001 | 2100 | 0.0001 | - |
227
+ | 1.1262 | 2150 | 0.0001 | - |
228
+ | 1.1524 | 2200 | 0.0001 | - |
229
+ | 1.1786 | 2250 | 0.0001 | - |
230
+ | 1.2048 | 2300 | 0.0001 | - |
231
+ | 1.2310 | 2350 | 0.0001 | - |
232
+ | 1.2572 | 2400 | 0.0001 | - |
233
+ | 1.2834 | 2450 | 0.0001 | - |
234
+ | 1.3096 | 2500 | 0.0001 | - |
235
+ | 1.3358 | 2550 | 0.0001 | - |
236
+ | 1.3620 | 2600 | 0.0001 | - |
237
+ | 1.3882 | 2650 | 0.0001 | - |
238
+ | 1.4144 | 2700 | 0.0001 | - |
239
+ | 1.4405 | 2750 | 0.0001 | - |
240
+ | 1.4667 | 2800 | 0.0001 | - |
241
+ | 1.4929 | 2850 | 0.0001 | - |
242
+ | 1.5191 | 2900 | 0.0001 | - |
243
+ | 1.5453 | 2950 | 0.0001 | - |
244
+ | 1.5715 | 3000 | 0.0001 | - |
245
+ | 1.5977 | 3050 | 0.0001 | - |
246
+ | 1.6239 | 3100 | 0.0001 | - |
247
+ | 1.6501 | 3150 | 0.0001 | - |
248
+ | 1.6763 | 3200 | 0.0 | - |
249
+ | 1.7025 | 3250 | 0.0001 | - |
250
+ | 1.7287 | 3300 | 0.0 | - |
251
+ | 1.7548 | 3350 | 0.0 | - |
252
+ | 1.7810 | 3400 | 0.0 | - |
253
+ | 1.8072 | 3450 | 0.0 | - |
254
+ | 1.8334 | 3500 | 0.0 | - |
255
+ | 1.8596 | 3550 | 0.0 | - |
256
+ | 1.8858 | 3600 | 0.0 | - |
257
+ | 1.9120 | 3650 | 0.0 | - |
258
+ | 1.9382 | 3700 | 0.0 | - |
259
+ | 1.9644 | 3750 | 0.0 | - |
260
+ | 1.9906 | 3800 | 0.0 | - |
261
+ | 2.0168 | 3850 | 0.0 | - |
262
+ | 2.0430 | 3900 | 0.0 | - |
263
+ | 2.0691 | 3950 | 0.0 | - |
264
+ | 2.0953 | 4000 | 0.0 | - |
265
+ | 2.1215 | 4050 | 0.0 | - |
266
+ | 2.1477 | 4100 | 0.0 | - |
267
+ | 2.1739 | 4150 | 0.0 | - |
268
+ | 2.2001 | 4200 | 0.0 | - |
269
+ | 2.2263 | 4250 | 0.0 | - |
270
+ | 2.2525 | 4300 | 0.0 | - |
271
+ | 2.2787 | 4350 | 0.0 | - |
272
+ | 2.3049 | 4400 | 0.0 | - |
273
+ | 2.3311 | 4450 | 0.0 | - |
274
+ | 2.3573 | 4500 | 0.0 | - |
275
+ | 2.3834 | 4550 | 0.0 | - |
276
+ | 2.4096 | 4600 | 0.0 | - |
277
+ | 2.4358 | 4650 | 0.0 | - |
278
+ | 2.4620 | 4700 | 0.0 | - |
279
+ | 2.4882 | 4750 | 0.0 | - |
280
+ | 2.5144 | 4800 | 0.0 | - |
281
+ | 2.5406 | 4850 | 0.0 | - |
282
+ | 2.5668 | 4900 | 0.0 | - |
283
+ | 2.5930 | 4950 | 0.0 | - |
284
+ | 2.6192 | 5000 | 0.0 | - |
285
+ | 2.6454 | 5050 | 0.0 | - |
286
+ | 2.6716 | 5100 | 0.0 | - |
287
+ | 2.6977 | 5150 | 0.0 | - |
288
+ | 2.7239 | 5200 | 0.0 | - |
289
+ | 2.7501 | 5250 | 0.0 | - |
290
+ | 2.7763 | 5300 | 0.0 | - |
291
+ | 2.8025 | 5350 | 0.0 | - |
292
+ | 2.8287 | 5400 | 0.0 | - |
293
+ | 2.8549 | 5450 | 0.0 | - |
294
+ | 2.8811 | 5500 | 0.0 | - |
295
+ | 2.9073 | 5550 | 0.0 | - |
296
+ | 2.9335 | 5600 | 0.0 | - |
297
+ | 2.9597 | 5650 | 0.0 | - |
298
+ | 2.9859 | 5700 | 0.0 | - |
299
+ | 3.0120 | 5750 | 0.0 | - |
300
+ | 3.0382 | 5800 | 0.0 | - |
301
+ | 3.0644 | 5850 | 0.0 | - |
302
+ | 3.0906 | 5900 | 0.0 | - |
303
+ | 3.1168 | 5950 | 0.0 | - |
304
+ | 3.1430 | 6000 | 0.0 | - |
305
+ | 3.1692 | 6050 | 0.0 | - |
306
+ | 3.1954 | 6100 | 0.0 | - |
307
+ | 3.2216 | 6150 | 0.0 | - |
308
+ | 3.2478 | 6200 | 0.0 | - |
309
+ | 3.2740 | 6250 | 0.0 | - |
310
+ | 3.3002 | 6300 | 0.0 | - |
311
+ | 3.3263 | 6350 | 0.0 | - |
312
+ | 3.3525 | 6400 | 0.0 | - |
313
+ | 3.3787 | 6450 | 0.0 | - |
314
+ | 3.4049 | 6500 | 0.0 | - |
315
+ | 3.4311 | 6550 | 0.0 | - |
316
+ | 3.4573 | 6600 | 0.0 | - |
317
+ | 3.4835 | 6650 | 0.0 | - |
318
+ | 3.5097 | 6700 | 0.0 | - |
319
+ | 3.5359 | 6750 | 0.0 | - |
320
+ | 3.5621 | 6800 | 0.0 | - |
321
+ | 3.5883 | 6850 | 0.0 | - |
322
+ | 3.6145 | 6900 | 0.0 | - |
323
+ | 3.6406 | 6950 | 0.0 | - |
324
+ | 3.6668 | 7000 | 0.0 | - |
325
+ | 3.6930 | 7050 | 0.0 | - |
326
+ | 3.7192 | 7100 | 0.0 | - |
327
+ | 3.7454 | 7150 | 0.0 | - |
328
+ | 3.7716 | 7200 | 0.0 | - |
329
+ | 3.7978 | 7250 | 0.0 | - |
330
+ | 3.8240 | 7300 | 0.0 | - |
331
+ | 3.8502 | 7350 | 0.0 | - |
332
+ | 3.8764 | 7400 | 0.0 | - |
333
+ | 3.9026 | 7450 | 0.0 | - |
334
+ | 3.9288 | 7500 | 0.0 | - |
335
+ | 3.9550 | 7550 | 0.0 | - |
336
+ | 3.9811 | 7600 | 0.0 | - |
337
+ | 4.0073 | 7650 | 0.0 | - |
338
+ | 4.0335 | 7700 | 0.0 | - |
339
+ | 4.0597 | 7750 | 0.0 | - |
340
+ | 4.0859 | 7800 | 0.0 | - |
341
+ | 4.1121 | 7850 | 0.0 | - |
342
+ | 4.1383 | 7900 | 0.0 | - |
343
+ | 4.1645 | 7950 | 0.0 | - |
344
+ | 4.1907 | 8000 | 0.0 | - |
345
+ | 4.2169 | 8050 | 0.0 | - |
346
+ | 4.2431 | 8100 | 0.0 | - |
347
+ | 4.2693 | 8150 | 0.0 | - |
348
+ | 4.2954 | 8200 | 0.0 | - |
349
+ | 4.3216 | 8250 | 0.0 | - |
350
+ | 4.3478 | 8300 | 0.0 | - |
351
+ | 4.3740 | 8350 | 0.0 | - |
352
+ | 4.4002 | 8400 | 0.0 | - |
353
+ | 4.4264 | 8450 | 0.0 | - |
354
+ | 4.4526 | 8500 | 0.0 | - |
355
+ | 4.4788 | 8550 | 0.0 | - |
356
+ | 4.5050 | 8600 | 0.0 | - |
357
+ | 4.5312 | 8650 | 0.0 | - |
358
+ | 4.5574 | 8700 | 0.0 | - |
359
+ | 4.5836 | 8750 | 0.0006 | - |
360
+ | 4.6097 | 8800 | 0.0006 | - |
361
+ | 4.6359 | 8850 | 0.0002 | - |
362
+ | 4.6621 | 8900 | 0.0001 | - |
363
+ | 4.6883 | 8950 | 0.0 | - |
364
+ | 4.7145 | 9000 | 0.0 | - |
365
+ | 4.7407 | 9050 | 0.0 | - |
366
+ | 4.7669 | 9100 | 0.0001 | - |
367
+ | 4.7931 | 9150 | 0.0 | - |
368
+ | 4.8193 | 9200 | 0.0 | - |
369
+ | 4.8455 | 9250 | 0.0 | - |
370
+ | 4.8717 | 9300 | 0.0 | - |
371
+ | 4.8979 | 9350 | 0.0 | - |
372
+ | 4.9240 | 9400 | 0.0 | - |
373
+ | 4.9502 | 9450 | 0.0 | - |
374
+ | 4.9764 | 9500 | 0.0 | - |
375
+ | 5.0026 | 9550 | 0.0 | - |
376
+ | 5.0288 | 9600 | 0.0 | - |
377
+ | 5.0550 | 9650 | 0.0 | - |
378
+ | 5.0812 | 9700 | 0.0 | - |
379
+ | 5.1074 | 9750 | 0.0 | - |
380
+ | 5.1336 | 9800 | 0.0 | - |
381
+ | 5.1598 | 9850 | 0.0 | - |
382
+ | 5.1860 | 9900 | 0.0 | - |
383
+ | 5.2122 | 9950 | 0.0 | - |
384
+ | 5.2383 | 10000 | 0.0 | - |
385
+ | 5.2645 | 10050 | 0.0 | - |
386
+ | 5.2907 | 10100 | 0.0 | - |
387
+ | 5.3169 | 10150 | 0.0 | - |
388
+ | 5.3431 | 10200 | 0.0 | - |
389
+ | 5.3693 | 10250 | 0.0 | - |
390
+ | 5.3955 | 10300 | 0.0 | - |
391
+ | 5.4217 | 10350 | 0.0 | - |
392
+ | 5.4479 | 10400 | 0.0 | - |
393
+ | 5.4741 | 10450 | 0.0 | - |
394
+ | 5.5003 | 10500 | 0.0 | - |
395
+ | 5.5265 | 10550 | 0.0 | - |
396
+ | 5.5526 | 10600 | 0.0 | - |
397
+ | 5.5788 | 10650 | 0.0 | - |
398
+ | 5.6050 | 10700 | 0.0 | - |
399
+ | 5.6312 | 10750 | 0.0 | - |
400
+ | 5.6574 | 10800 | 0.0 | - |
401
+ | 5.6836 | 10850 | 0.0 | - |
402
+ | 5.7098 | 10900 | 0.0 | - |
403
+ | 5.7360 | 10950 | 0.0 | - |
404
+ | 5.7622 | 11000 | 0.0 | - |
405
+ | 5.7884 | 11050 | 0.0 | - |
406
+ | 5.8146 | 11100 | 0.0 | - |
407
+ | 5.8408 | 11150 | 0.0 | - |
408
+ | 5.8669 | 11200 | 0.0 | - |
409
+ | 5.8931 | 11250 | 0.0 | - |
410
+ | 5.9193 | 11300 | 0.0 | - |
411
+ | 5.9455 | 11350 | 0.0 | - |
412
+ | 5.9717 | 11400 | 0.0 | - |
413
+ | 5.9979 | 11450 | 0.0 | - |
414
+ | 6.0241 | 11500 | 0.0 | - |
415
+ | 6.0503 | 11550 | 0.0 | - |
416
+ | 6.0765 | 11600 | 0.0 | - |
417
+ | 6.1027 | 11650 | 0.0 | - |
418
+ | 6.1289 | 11700 | 0.0 | - |
419
+ | 6.1551 | 11750 | 0.0 | - |
420
+ | 6.1812 | 11800 | 0.0 | - |
421
+ | 6.2074 | 11850 | 0.0 | - |
422
+ | 6.2336 | 11900 | 0.0 | - |
423
+ | 6.2598 | 11950 | 0.0 | - |
424
+ | 6.2860 | 12000 | 0.0 | - |
425
+ | 6.3122 | 12050 | 0.0 | - |
426
+ | 6.3384 | 12100 | 0.0 | - |
427
+ | 6.3646 | 12150 | 0.0 | - |
428
+ | 6.3908 | 12200 | 0.0 | - |
429
+ | 6.4170 | 12250 | 0.0 | - |
430
+ | 6.4432 | 12300 | 0.0 | - |
431
+ | 6.4694 | 12350 | 0.0 | - |
432
+ | 6.4955 | 12400 | 0.0 | - |
433
+ | 6.5217 | 12450 | 0.0 | - |
434
+ | 6.5479 | 12500 | 0.0 | - |
435
+ | 6.5741 | 12550 | 0.0 | - |
436
+ | 6.6003 | 12600 | 0.0 | - |
437
+ | 6.6265 | 12650 | 0.0 | - |
438
+ | 6.6527 | 12700 | 0.0 | - |
439
+ | 6.6789 | 12750 | 0.0 | - |
440
+ | 6.7051 | 12800 | 0.0 | - |
441
+ | 6.7313 | 12850 | 0.0 | - |
442
+ | 6.7575 | 12900 | 0.0 | - |
443
+ | 6.7837 | 12950 | 0.0 | - |
444
+ | 6.8098 | 13000 | 0.0 | - |
445
+ | 6.8360 | 13050 | 0.0 | - |
446
+ | 6.8622 | 13100 | 0.0 | - |
447
+ | 6.8884 | 13150 | 0.0 | - |
448
+ | 6.9146 | 13200 | 0.0 | - |
449
+ | 6.9408 | 13250 | 0.0 | - |
450
+ | 6.9670 | 13300 | 0.0 | - |
451
+ | 6.9932 | 13350 | 0.0 | - |
452
+ | 7.0194 | 13400 | 0.0 | - |
453
+ | 7.0456 | 13450 | 0.0 | - |
454
+ | 7.0718 | 13500 | 0.0 | - |
455
+ | 7.0980 | 13550 | 0.0 | - |
456
+ | 7.1241 | 13600 | 0.0 | - |
457
+ | 7.1503 | 13650 | 0.0 | - |
458
+ | 7.1765 | 13700 | 0.0 | - |
459
+ | 7.2027 | 13750 | 0.0 | - |
460
+ | 7.2289 | 13800 | 0.0 | - |
461
+ | 7.2551 | 13850 | 0.0 | - |
462
+ | 7.2813 | 13900 | 0.0 | - |
463
+ | 7.3075 | 13950 | 0.0 | - |
464
+ | 7.3337 | 14000 | 0.0 | - |
465
+ | 7.3599 | 14050 | 0.0 | - |
466
+ | 7.3861 | 14100 | 0.0 | - |
467
+ | 7.4123 | 14150 | 0.0 | - |
468
+ | 7.4384 | 14200 | 0.0 | - |
469
+ | 7.4646 | 14250 | 0.0 | - |
470
+ | 7.4908 | 14300 | 0.0 | - |
471
+ | 7.5170 | 14350 | 0.0 | - |
472
+ | 7.5432 | 14400 | 0.0 | - |
473
+ | 7.5694 | 14450 | 0.0 | - |
474
+ | 7.5956 | 14500 | 0.0 | - |
475
+ | 7.6218 | 14550 | 0.0 | - |
476
+ | 7.6480 | 14600 | 0.0 | - |
477
+ | 7.6742 | 14650 | 0.0 | - |
478
+ | 7.7004 | 14700 | 0.0 | - |
479
+ | 7.7266 | 14750 | 0.0 | - |
480
+ | 7.7528 | 14800 | 0.0 | - |
481
+ | 7.7789 | 14850 | 0.0 | - |
482
+ | 7.8051 | 14900 | 0.0 | - |
483
+ | 7.8313 | 14950 | 0.0 | - |
484
+ | 7.8575 | 15000 | 0.0 | - |
485
+ | 7.8837 | 15050 | 0.0 | - |
486
+ | 7.9099 | 15100 | 0.0 | - |
487
+ | 7.9361 | 15150 | 0.0 | - |
488
+ | 7.9623 | 15200 | 0.0 | - |
489
+ | 7.9885 | 15250 | 0.0 | - |
490
+ | 8.0147 | 15300 | 0.0 | - |
491
+ | 8.0409 | 15350 | 0.0 | - |
492
+ | 8.0671 | 15400 | 0.0 | - |
493
+ | 8.0932 | 15450 | 0.0 | - |
494
+ | 8.1194 | 15500 | 0.0 | - |
495
+ | 8.1456 | 15550 | 0.0 | - |
496
+ | 8.1718 | 15600 | 0.0 | - |
497
+ | 8.1980 | 15650 | 0.0 | - |
498
+ | 8.2242 | 15700 | 0.0 | - |
499
+ | 8.2504 | 15750 | 0.0 | - |
500
+ | 8.2766 | 15800 | 0.0 | - |
501
+ | 8.3028 | 15850 | 0.0 | - |
502
+ | 8.3290 | 15900 | 0.0 | - |
503
+ | 8.3552 | 15950 | 0.0 | - |
504
+ | 8.3814 | 16000 | 0.0 | - |
505
+ | 8.4075 | 16050 | 0.0 | - |
506
+ | 8.4337 | 16100 | 0.0 | - |
507
+ | 8.4599 | 16150 | 0.0 | - |
508
+ | 8.4861 | 16200 | 0.0 | - |
509
+ | 8.5123 | 16250 | 0.0 | - |
510
+ | 8.5385 | 16300 | 0.0 | - |
511
+ | 8.5647 | 16350 | 0.0 | - |
512
+ | 8.5909 | 16400 | 0.0 | - |
513
+ | 8.6171 | 16450 | 0.0 | - |
514
+ | 8.6433 | 16500 | 0.0 | - |
515
+ | 8.6695 | 16550 | 0.0 | - |
516
+ | 8.6957 | 16600 | 0.0 | - |
517
+ | 8.7218 | 16650 | 0.0 | - |
518
+ | 8.7480 | 16700 | 0.0 | - |
519
+ | 8.7742 | 16750 | 0.0 | - |
520
+ | 8.8004 | 16800 | 0.0 | - |
521
+ | 8.8266 | 16850 | 0.0 | - |
522
+ | 8.8528 | 16900 | 0.0 | - |
523
+ | 8.8790 | 16950 | 0.0 | - |
524
+ | 8.9052 | 17000 | 0.0 | - |
525
+ | 8.9314 | 17050 | 0.0 | - |
526
+ | 8.9576 | 17100 | 0.0 | - |
527
+ | 8.9838 | 17150 | 0.0 | - |
528
+ | 9.0100 | 17200 | 0.0 | - |
529
+ | 9.0361 | 17250 | 0.0 | - |
530
+ | 9.0623 | 17300 | 0.0 | - |
531
+ | 9.0885 | 17350 | 0.0 | - |
532
+ | 9.1147 | 17400 | 0.0 | - |
533
+ | 9.1409 | 17450 | 0.0 | - |
534
+ | 9.1671 | 17500 | 0.0 | - |
535
+ | 9.1933 | 17550 | 0.0 | - |
536
+ | 9.2195 | 17600 | 0.0 | - |
537
+ | 9.2457 | 17650 | 0.0 | - |
538
+ | 9.2719 | 17700 | 0.0 | - |
539
+ | 9.2981 | 17750 | 0.0 | - |
540
+ | 9.3243 | 17800 | 0.0 | - |
541
+ | 9.3504 | 17850 | 0.0 | - |
542
+ | 9.3766 | 17900 | 0.0 | - |
543
+ | 9.4028 | 17950 | 0.0 | - |
544
+ | 9.4290 | 18000 | 0.0 | - |
545
+ | 9.4552 | 18050 | 0.0 | - |
546
+ | 9.4814 | 18100 | 0.0 | - |
547
+ | 9.5076 | 18150 | 0.0 | - |
548
+ | 9.5338 | 18200 | 0.0 | - |
549
+ | 9.5600 | 18250 | 0.0 | - |
550
+ | 9.5862 | 18300 | 0.0 | - |
551
+ | 9.6124 | 18350 | 0.0 | - |
552
+ | 9.6386 | 18400 | 0.0 | - |
553
+ | 9.6647 | 18450 | 0.0 | - |
554
+ | 9.6909 | 18500 | 0.0 | - |
555
+ | 9.7171 | 18550 | 0.0 | - |
556
+ | 9.7433 | 18600 | 0.0 | - |
557
+ | 9.7695 | 18650 | 0.0 | - |
558
+ | 9.7957 | 18700 | 0.0 | - |
559
+ | 9.8219 | 18750 | 0.0 | - |
560
+ | 9.8481 | 18800 | 0.0 | - |
561
+ | 9.8743 | 18850 | 0.0 | - |
562
+ | 9.9005 | 18900 | 0.0 | - |
563
+ | 9.9267 | 18950 | 0.0 | - |
564
+ | 9.9529 | 19000 | 0.0 | - |
565
+ | 9.9790 | 19050 | 0.0 | - |
566
+ | 10.0052 | 19100 | 0.0 | - |
567
+ | 10.0314 | 19150 | 0.0 | - |
568
+ | 10.0576 | 19200 | 0.0009 | - |
569
+ | 10.0838 | 19250 | 0.0001 | - |
570
+ | 10.1100 | 19300 | 0.0 | - |
571
+ | 10.1362 | 19350 | 0.0 | - |
572
+ | 10.1624 | 19400 | 0.0 | - |
573
+ | 10.1886 | 19450 | 0.0 | - |
574
+ | 10.2148 | 19500 | 0.0 | - |
575
+ | 10.2410 | 19550 | 0.0 | - |
576
+ | 10.2672 | 19600 | 0.0 | - |
577
+ | 10.2933 | 19650 | 0.0 | - |
578
+ | 10.3195 | 19700 | 0.0 | - |
579
+ | 10.3457 | 19750 | 0.0 | - |
580
+ | 10.3719 | 19800 | 0.0 | - |
581
+ | 10.3981 | 19850 | 0.0 | - |
582
+ | 10.4243 | 19900 | 0.0 | - |
583
+ | 10.4505 | 19950 | 0.0 | - |
584
+ | 10.4767 | 20000 | 0.0 | - |
585
+ | 10.5029 | 20050 | 0.0 | - |
586
+ | 10.5291 | 20100 | 0.0 | - |
587
+ | 10.5553 | 20150 | 0.0 | - |
588
+ | 10.5815 | 20200 | 0.0 | - |
589
+ | 10.6076 | 20250 | 0.0 | - |
590
+ | 10.6338 | 20300 | 0.0 | - |
591
+ | 10.6600 | 20350 | 0.0 | - |
592
+ | 10.6862 | 20400 | 0.0 | - |
593
+ | 10.7124 | 20450 | 0.0 | - |
594
+ | 10.7386 | 20500 | 0.0 | - |
595
+ | 10.7648 | 20550 | 0.0 | - |
596
+ | 10.7910 | 20600 | 0.0 | - |
597
+ | 10.8172 | 20650 | 0.0 | - |
598
+ | 10.8434 | 20700 | 0.0 | - |
599
+ | 10.8696 | 20750 | 0.0 | - |
600
+ | 10.8958 | 20800 | 0.0 | - |
601
+ | 10.9219 | 20850 | 0.0 | - |
602
+ | 10.9481 | 20900 | 0.0 | - |
603
+ | 10.9743 | 20950 | 0.0 | - |
604
+ | 11.0005 | 21000 | 0.0 | - |
605
+ | 11.0267 | 21050 | 0.0 | - |
606
+ | 11.0529 | 21100 | 0.0 | - |
607
+ | 11.0791 | 21150 | 0.0 | - |
608
+ | 11.1053 | 21200 | 0.0 | - |
609
+ | 11.1315 | 21250 | 0.0 | - |
610
+ | 11.1577 | 21300 | 0.0 | - |
611
+ | 11.1839 | 21350 | 0.0 | - |
612
+ | 11.2101 | 21400 | 0.0 | - |
613
+ | 11.2362 | 21450 | 0.0 | - |
614
+ | 11.2624 | 21500 | 0.0 | - |
615
+ | 11.2886 | 21550 | 0.0 | - |
616
+ | 11.3148 | 21600 | 0.0 | - |
617
+ | 11.3410 | 21650 | 0.0 | - |
618
+ | 11.3672 | 21700 | 0.0 | - |
619
+ | 11.3934 | 21750 | 0.0 | - |
620
+ | 11.4196 | 21800 | 0.0 | - |
621
+ | 11.4458 | 21850 | 0.0 | - |
622
+ | 11.4720 | 21900 | 0.0 | - |
623
+ | 11.4982 | 21950 | 0.0 | - |
624
+ | 11.5244 | 22000 | 0.0 | - |
625
+ | 11.5506 | 22050 | 0.0 | - |
626
+ | 11.5767 | 22100 | 0.0 | - |
627
+ | 11.6029 | 22150 | 0.0 | - |
628
+ | 11.6291 | 22200 | 0.0 | - |
629
+ | 11.6553 | 22250 | 0.0 | - |
630
+ | 11.6815 | 22300 | 0.0 | - |
631
+ | 11.7077 | 22350 | 0.0 | - |
632
+ | 11.7339 | 22400 | 0.0 | - |
633
+ | 11.7601 | 22450 | 0.0 | - |
634
+ | 11.7863 | 22500 | 0.0 | - |
635
+ | 11.8125 | 22550 | 0.0 | - |
636
+ | 11.8387 | 22600 | 0.0 | - |
637
+ | 11.8649 | 22650 | 0.0 | - |
638
+ | 11.8910 | 22700 | 0.0 | - |
639
+ | 11.9172 | 22750 | 0.0 | - |
640
+ | 11.9434 | 22800 | 0.0 | - |
641
+ | 11.9696 | 22850 | 0.0 | - |
642
+ | 11.9958 | 22900 | 0.0 | - |
643
+ | 12.0220 | 22950 | 0.0 | - |
644
+ | 12.0482 | 23000 | 0.0 | - |
645
+ | 12.0744 | 23050 | 0.0 | - |
646
+ | 12.1006 | 23100 | 0.0 | - |
647
+ | 12.1268 | 23150 | 0.0 | - |
648
+ | 12.1530 | 23200 | 0.0 | - |
649
+ | 12.1792 | 23250 | 0.0 | - |
650
+ | 12.2053 | 23300 | 0.0 | - |
651
+ | 12.2315 | 23350 | 0.0 | - |
652
+ | 12.2577 | 23400 | 0.0 | - |
653
+ | 12.2839 | 23450 | 0.0 | - |
654
+ | 12.3101 | 23500 | 0.0 | - |
655
+ | 12.3363 | 23550 | 0.0 | - |
656
+ | 12.3625 | 23600 | 0.0 | - |
657
+ | 12.3887 | 23650 | 0.0 | - |
658
+ | 12.4149 | 23700 | 0.0 | - |
659
+ | 12.4411 | 23750 | 0.0 | - |
660
+ | 12.4673 | 23800 | 0.0 | - |
661
+ | 12.4935 | 23850 | 0.0 | - |
662
+ | 12.5196 | 23900 | 0.0 | - |
663
+ | 12.5458 | 23950 | 0.0 | - |
664
+ | 12.5720 | 24000 | 0.0 | - |
665
+ | 12.5982 | 24050 | 0.0 | - |
666
+ | 12.6244 | 24100 | 0.0 | - |
667
+ | 12.6506 | 24150 | 0.0 | - |
668
+ | 12.6768 | 24200 | 0.0 | - |
669
+ | 12.7030 | 24250 | 0.0 | - |
670
+ | 12.7292 | 24300 | 0.0 | - |
671
+ | 12.7554 | 24350 | 0.0 | - |
672
+ | 12.7816 | 24400 | 0.0 | - |
673
+ | 12.8078 | 24450 | 0.0 | - |
674
+ | 12.8339 | 24500 | 0.0 | - |
675
+ | 12.8601 | 24550 | 0.0 | - |
676
+ | 12.8863 | 24600 | 0.0 | - |
677
+ | 12.9125 | 24650 | 0.0 | - |
678
+ | 12.9387 | 24700 | 0.0 | - |
679
+ | 12.9649 | 24750 | 0.0 | - |
680
+ | 12.9911 | 24800 | 0.0 | - |
681
+ | 13.0173 | 24850 | 0.0 | - |
682
+ | 13.0435 | 24900 | 0.0 | - |
683
+ | 13.0697 | 24950 | 0.0 | - |
684
+ | 13.0959 | 25000 | 0.0 | - |
685
+ | 13.1221 | 25050 | 0.0 | - |
686
+ | 13.1482 | 25100 | 0.0 | - |
687
+ | 13.1744 | 25150 | 0.0 | - |
688
+ | 13.2006 | 25200 | 0.0 | - |
689
+ | 13.2268 | 25250 | 0.0 | - |
690
+ | 13.2530 | 25300 | 0.0 | - |
691
+ | 13.2792 | 25350 | 0.0 | - |
692
+ | 13.3054 | 25400 | 0.0 | - |
693
+ | 13.3316 | 25450 | 0.0 | - |
694
+ | 13.3578 | 25500 | 0.0 | - |
695
+ | 13.3840 | 25550 | 0.0 | - |
696
+ | 13.4102 | 25600 | 0.0 | - |
697
+ | 13.4364 | 25650 | 0.0 | - |
698
+ | 13.4625 | 25700 | 0.0 | - |
699
+ | 13.4887 | 25750 | 0.0 | - |
700
+ | 13.5149 | 25800 | 0.0 | - |
701
+ | 13.5411 | 25850 | 0.0 | - |
702
+ | 13.5673 | 25900 | 0.0 | - |
703
+ | 13.5935 | 25950 | 0.0 | - |
704
+ | 13.6197 | 26000 | 0.0 | - |
705
+ | 13.6459 | 26050 | 0.0 | - |
706
+ | 13.6721 | 26100 | 0.0 | - |
707
+ | 13.6983 | 26150 | 0.0 | - |
708
+ | 13.7245 | 26200 | 0.0 | - |
709
+ | 13.7507 | 26250 | 0.0 | - |
710
+ | 13.7768 | 26300 | 0.0 | - |
711
+ | 13.8030 | 26350 | 0.0 | - |
712
+ | 13.8292 | 26400 | 0.0 | - |
713
+ | 13.8554 | 26450 | 0.0 | - |
714
+ | 13.8816 | 26500 | 0.0 | - |
715
+ | 13.9078 | 26550 | 0.0 | - |
716
+ | 13.9340 | 26600 | 0.0 | - |
717
+ | 13.9602 | 26650 | 0.0 | - |
718
+ | 13.9864 | 26700 | 0.0 | - |
719
+ | 14.0126 | 26750 | 0.0 | - |
720
+ | 14.0388 | 26800 | 0.0 | - |
721
+ | 14.0650 | 26850 | 0.0 | - |
722
+ | 14.0911 | 26900 | 0.0 | - |
723
+ | 14.1173 | 26950 | 0.0 | - |
724
+ | 14.1435 | 27000 | 0.0 | - |
725
+ | 14.1697 | 27050 | 0.0 | - |
726
+ | 14.1959 | 27100 | 0.0 | - |
727
+ | 14.2221 | 27150 | 0.0 | - |
728
+ | 14.2483 | 27200 | 0.0 | - |
729
+ | 14.2745 | 27250 | 0.0 | - |
730
+ | 14.3007 | 27300 | 0.0 | - |
731
+ | 14.3269 | 27350 | 0.0 | - |
732
+ | 14.3531 | 27400 | 0.0 | - |
733
+ | 14.3793 | 27450 | 0.0 | - |
734
+ | 14.4054 | 27500 | 0.0 | - |
735
+ | 14.4316 | 27550 | 0.0 | - |
736
+ | 14.4578 | 27600 | 0.0 | - |
737
+ | 14.4840 | 27650 | 0.0 | - |
738
+ | 14.5102 | 27700 | 0.0 | - |
739
+ | 14.5364 | 27750 | 0.0 | - |
740
+ | 14.5626 | 27800 | 0.0 | - |
741
+ | 14.5888 | 27850 | 0.0 | - |
742
+ | 14.6150 | 27900 | 0.0 | - |
743
+ | 14.6412 | 27950 | 0.0 | - |
744
+ | 14.6674 | 28000 | 0.0 | - |
745
+ | 14.6936 | 28050 | 0.0 | - |
746
+ | 14.7197 | 28100 | 0.0 | - |
747
+ | 14.7459 | 28150 | 0.0 | - |
748
+ | 14.7721 | 28200 | 0.0 | - |
749
+ | 14.7983 | 28250 | 0.0 | - |
750
+ | 14.8245 | 28300 | 0.0 | - |
751
+ | 14.8507 | 28350 | 0.0 | - |
752
+ | 14.8769 | 28400 | 0.0 | - |
753
+ | 14.9031 | 28450 | 0.0 | - |
754
+ | 14.9293 | 28500 | 0.0 | - |
755
+ | 14.9555 | 28550 | 0.0 | - |
756
+ | 14.9817 | 28600 | 0.0 | - |
757
+ | 15.0079 | 28650 | 0.0 | - |
758
+ | 15.0340 | 28700 | 0.0 | - |
759
+ | 15.0602 | 28750 | 0.0 | - |
760
+ | 15.0864 | 28800 | 0.0 | - |
761
+ | 15.1126 | 28850 | 0.0 | - |
762
+ | 15.1388 | 28900 | 0.0 | - |
763
+ | 15.1650 | 28950 | 0.0 | - |
764
+ | 15.1912 | 29000 | 0.0 | - |
765
+ | 15.2174 | 29050 | 0.0 | - |
766
+ | 15.2436 | 29100 | 0.0 | - |
767
+ | 15.2698 | 29150 | 0.0 | - |
768
+ | 15.2960 | 29200 | 0.0 | - |
769
+ | 15.3222 | 29250 | 0.0 | - |
770
+ | 15.3483 | 29300 | 0.0 | - |
771
+ | 15.3745 | 29350 | 0.0 | - |
772
+ | 15.4007 | 29400 | 0.0 | - |
773
+ | 15.4269 | 29450 | 0.0 | - |
774
+ | 15.4531 | 29500 | 0.0 | - |
775
+ | 15.4793 | 29550 | 0.0 | - |
776
+ | 15.5055 | 29600 | 0.0 | - |
777
+ | 15.5317 | 29650 | 0.0 | - |
778
+ | 15.5579 | 29700 | 0.0 | - |
779
+ | 15.5841 | 29750 | 0.0 | - |
780
+ | 15.6103 | 29800 | 0.0 | - |
781
+ | 15.6365 | 29850 | 0.0 | - |
782
+ | 15.6627 | 29900 | 0.0 | - |
783
+ | 15.6888 | 29950 | 0.0 | - |
784
+ | 15.7150 | 30000 | 0.0 | - |
785
+ | 15.7412 | 30050 | 0.0 | - |
786
+ | 15.7674 | 30100 | 0.0 | - |
787
+ | 15.7936 | 30150 | 0.0 | - |
788
+ | 15.8198 | 30200 | 0.0 | - |
789
+ | 15.8460 | 30250 | 0.0 | - |
790
+ | 15.8722 | 30300 | 0.0 | - |
791
+ | 15.8984 | 30350 | 0.0 | - |
792
+ | 15.9246 | 30400 | 0.0 | - |
793
+ | 15.9508 | 30450 | 0.0 | - |
794
+ | 15.9770 | 30500 | 0.0 | - |
795
+ | 16.0031 | 30550 | 0.0 | - |
796
+ | 16.0293 | 30600 | 0.0 | - |
797
+ | 16.0555 | 30650 | 0.0 | - |
798
+ | 16.0817 | 30700 | 0.0 | - |
799
+ | 16.1079 | 30750 | 0.0 | - |
800
+ | 16.1341 | 30800 | 0.0 | - |
801
+ | 16.1603 | 30850 | 0.0 | - |
802
+ | 16.1865 | 30900 | 0.0 | - |
803
+ | 16.2127 | 30950 | 0.0 | - |
804
+ | 16.2389 | 31000 | 0.0 | - |
805
+ | 16.2651 | 31050 | 0.0 | - |
806
+ | 16.2913 | 31100 | 0.0 | - |
807
+ | 16.3174 | 31150 | 0.0 | - |
808
+ | 16.3436 | 31200 | 0.0 | - |
809
+ | 16.3698 | 31250 | 0.0 | - |
810
+ | 16.3960 | 31300 | 0.0 | - |
811
+ | 16.4222 | 31350 | 0.0 | - |
812
+ | 16.4484 | 31400 | 0.0 | - |
813
+ | 16.4746 | 31450 | 0.0 | - |
814
+ | 16.5008 | 31500 | 0.0 | - |
815
+ | 16.5270 | 31550 | 0.0 | - |
816
+ | 16.5532 | 31600 | 0.0 | - |
817
+ | 16.5794 | 31650 | 0.0 | - |
818
+ | 16.6056 | 31700 | 0.0 | - |
819
+ | 16.6317 | 31750 | 0.0 | - |
820
+ | 16.6579 | 31800 | 0.0 | - |
821
+ | 16.6841 | 31850 | 0.0 | - |
822
+ | 16.7103 | 31900 | 0.0 | - |
823
+ | 16.7365 | 31950 | 0.0 | - |
824
+ | 16.7627 | 32000 | 0.0 | - |
825
+ | 16.7889 | 32050 | 0.0 | - |
826
+ | 16.8151 | 32100 | 0.0 | - |
827
+ | 16.8413 | 32150 | 0.0 | - |
828
+ | 16.8675 | 32200 | 0.0 | - |
829
+ | 16.8937 | 32250 | 0.0 | - |
830
+ | 16.9199 | 32300 | 0.0 | - |
831
+ | 16.9460 | 32350 | 0.0 | - |
832
+ | 16.9722 | 32400 | 0.0 | - |
833
+ | 16.9984 | 32450 | 0.0 | - |
834
+ | 17.0246 | 32500 | 0.0 | - |
835
+ | 17.0508 | 32550 | 0.0 | - |
836
+ | 17.0770 | 32600 | 0.0 | - |
837
+ | 17.1032 | 32650 | 0.0 | - |
838
+ | 17.1294 | 32700 | 0.0 | - |
839
+ | 17.1556 | 32750 | 0.0 | - |
840
+ | 17.1818 | 32800 | 0.0 | - |
841
+ | 17.2080 | 32850 | 0.0 | - |
842
+ | 17.2342 | 32900 | 0.0 | - |
843
+ | 17.2603 | 32950 | 0.0 | - |
844
+ | 17.2865 | 33000 | 0.0 | - |
845
+ | 17.3127 | 33050 | 0.0 | - |
846
+ | 17.3389 | 33100 | 0.0 | - |
847
+ | 17.3651 | 33150 | 0.0 | - |
848
+ | 17.3913 | 33200 | 0.0 | - |
849
+ | 17.4175 | 33250 | 0.0 | - |
850
+ | 17.4437 | 33300 | 0.0 | - |
851
+ | 17.4699 | 33350 | 0.0 | - |
852
+ | 17.4961 | 33400 | 0.0 | - |
853
+ | 17.5223 | 33450 | 0.0 | - |
854
+ | 17.5485 | 33500 | 0.0 | - |
855
+ | 17.5746 | 33550 | 0.0 | - |
856
+ | 17.6008 | 33600 | 0.0 | - |
857
+ | 17.6270 | 33650 | 0.0 | - |
858
+ | 17.6532 | 33700 | 0.0 | - |
859
+ | 17.6794 | 33750 | 0.0 | - |
860
+ | 17.7056 | 33800 | 0.0 | - |
861
+ | 17.7318 | 33850 | 0.0 | - |
862
+ | 17.7580 | 33900 | 0.0 | - |
863
+ | 17.7842 | 33950 | 0.0 | - |
864
+ | 17.8104 | 34000 | 0.0 | - |
865
+ | 17.8366 | 34050 | 0.0 | - |
866
+ | 17.8628 | 34100 | 0.0 | - |
867
+ | 17.8889 | 34150 | 0.0 | - |
868
+ | 17.9151 | 34200 | 0.0 | - |
869
+ | 17.9413 | 34250 | 0.0 | - |
870
+ | 17.9675 | 34300 | 0.0 | - |
871
+ | 17.9937 | 34350 | 0.0 | - |
872
+ | 18.0199 | 34400 | 0.0 | - |
873
+ | 18.0461 | 34450 | 0.0 | - |
874
+ | 18.0723 | 34500 | 0.0 | - |
875
+ | 18.0985 | 34550 | 0.0 | - |
876
+ | 18.1247 | 34600 | 0.0 | - |
877
+ | 18.1509 | 34650 | 0.0 | - |
878
+ | 18.1771 | 34700 | 0.0 | - |
879
+ | 18.2032 | 34750 | 0.0 | - |
880
+ | 18.2294 | 34800 | 0.0 | - |
881
+ | 18.2556 | 34850 | 0.0 | - |
882
+ | 18.2818 | 34900 | 0.0 | - |
883
+ | 18.3080 | 34950 | 0.0 | - |
884
+ | 18.3342 | 35000 | 0.0 | - |
885
+ | 18.3604 | 35050 | 0.0 | - |
886
+ | 18.3866 | 35100 | 0.0 | - |
887
+ | 18.4128 | 35150 | 0.0 | - |
888
+ | 18.4390 | 35200 | 0.0 | - |
889
+ | 18.4652 | 35250 | 0.0 | - |
890
+ | 18.4914 | 35300 | 0.0 | - |
891
+ | 18.5175 | 35350 | 0.0 | - |
892
+ | 18.5437 | 35400 | 0.0 | - |
893
+ | 18.5699 | 35450 | 0.0 | - |
894
+ | 18.5961 | 35500 | 0.0 | - |
895
+ | 18.6223 | 35550 | 0.0 | - |
896
+ | 18.6485 | 35600 | 0.0 | - |
897
+ | 18.6747 | 35650 | 0.0 | - |
898
+ | 18.7009 | 35700 | 0.0 | - |
899
+ | 18.7271 | 35750 | 0.0 | - |
900
+ | 18.7533 | 35800 | 0.0 | - |
901
+ | 18.7795 | 35850 | 0.0 | - |
902
+ | 18.8057 | 35900 | 0.0 | - |
903
+ | 18.8318 | 35950 | 0.0 | - |
904
+ | 18.8580 | 36000 | 0.0 | - |
905
+ | 18.8842 | 36050 | 0.0 | - |
906
+ | 18.9104 | 36100 | 0.0 | - |
907
+ | 18.9366 | 36150 | 0.0 | - |
908
+ | 18.9628 | 36200 | 0.0 | - |
909
+ | 18.9890 | 36250 | 0.0 | - |
910
+ | 19.0152 | 36300 | 0.0 | - |
911
+ | 19.0414 | 36350 | 0.0 | - |
912
+ | 19.0676 | 36400 | 0.0 | - |
913
+ | 19.0938 | 36450 | 0.0 | - |
914
+ | 19.1200 | 36500 | 0.0 | - |
915
+ | 19.1461 | 36550 | 0.0 | - |
916
+ | 19.1723 | 36600 | 0.0 | - |
917
+ | 19.1985 | 36650 | 0.0 | - |
918
+ | 19.2247 | 36700 | 0.0 | - |
919
+ | 19.2509 | 36750 | 0.0 | - |
920
+ | 19.2771 | 36800 | 0.0 | - |
921
+ | 19.3033 | 36850 | 0.0 | - |
922
+ | 19.3295 | 36900 | 0.0 | - |
923
+ | 19.3557 | 36950 | 0.0 | - |
924
+ | 19.3819 | 37000 | 0.0 | - |
925
+ | 19.4081 | 37050 | 0.0 | - |
926
+ | 19.4343 | 37100 | 0.0 | - |
927
+ | 19.4605 | 37150 | 0.0 | - |
928
+ | 19.4866 | 37200 | 0.0 | - |
929
+ | 19.5128 | 37250 | 0.0 | - |
930
+ | 19.5390 | 37300 | 0.0 | - |
931
+ | 19.5652 | 37350 | 0.0 | - |
932
+ | 19.5914 | 37400 | 0.0 | - |
933
+ | 19.6176 | 37450 | 0.0 | - |
934
+ | 19.6438 | 37500 | 0.0 | - |
935
+ | 19.6700 | 37550 | 0.0 | - |
936
+ | 19.6962 | 37600 | 0.0 | - |
937
+ | 19.7224 | 37650 | 0.0 | - |
938
+ | 19.7486 | 37700 | 0.0 | - |
939
+ | 19.7748 | 37750 | 0.0 | - |
940
+ | 19.8009 | 37800 | 0.0 | - |
941
+ | 19.8271 | 37850 | 0.0 | - |
942
+ | 19.8533 | 37900 | 0.0 | - |
943
+ | 19.8795 | 37950 | 0.0 | - |
944
+ | 19.9057 | 38000 | 0.0 | - |
945
+ | 19.9319 | 38050 | 0.0 | - |
946
+ | 19.9581 | 38100 | 0.0 | - |
947
+ | 19.9843 | 38150 | 0.0 | - |
948
+ | 20.0105 | 38200 | 0.0 | - |
949
+ | 20.0367 | 38250 | 0.0 | - |
950
+ | 20.0629 | 38300 | 0.0 | - |
951
+ | 20.0891 | 38350 | 0.0 | - |
952
+ | 20.1152 | 38400 | 0.0 | - |
953
+ | 20.1414 | 38450 | 0.0 | - |
954
+ | 20.1676 | 38500 | 0.0 | - |
955
+ | 20.1938 | 38550 | 0.0 | - |
956
+ | 20.2200 | 38600 | 0.0 | - |
957
+ | 20.2462 | 38650 | 0.0 | - |
958
+ | 20.2724 | 38700 | 0.0 | - |
959
+ | 20.2986 | 38750 | 0.0 | - |
960
+ | 20.3248 | 38800 | 0.0 | - |
961
+ | 20.3510 | 38850 | 0.0 | - |
962
+ | 20.3772 | 38900 | 0.0 | - |
963
+ | 20.4034 | 38950 | 0.0 | - |
964
+ | 20.4295 | 39000 | 0.0 | - |
965
+ | 20.4557 | 39050 | 0.0 | - |
966
+ | 20.4819 | 39100 | 0.0 | - |
967
+ | 20.5081 | 39150 | 0.0 | - |
968
+ | 20.5343 | 39200 | 0.0 | - |
969
+ | 20.5605 | 39250 | 0.0 | - |
970
+ | 20.5867 | 39300 | 0.0 | - |
971
+ | 20.6129 | 39350 | 0.0 | - |
972
+ | 20.6391 | 39400 | 0.0 | - |
973
+ | 20.6653 | 39450 | 0.0 | - |
974
+ | 20.6915 | 39500 | 0.0 | - |
975
+ | 20.7177 | 39550 | 0.0 | - |
976
+ | 20.7438 | 39600 | 0.0 | - |
977
+ | 20.7700 | 39650 | 0.0 | - |
978
+ | 20.7962 | 39700 | 0.0 | - |
979
+ | 20.8224 | 39750 | 0.0 | - |
980
+ | 20.8486 | 39800 | 0.0 | - |
981
+ | 20.8748 | 39850 | 0.0 | - |
982
+ | 20.9010 | 39900 | 0.0 | - |
983
+ | 20.9272 | 39950 | 0.0 | - |
984
+ | 20.9534 | 40000 | 0.0 | - |
985
+ | 20.9796 | 40050 | 0.0 | - |
986
+ | 21.0058 | 40100 | 0.0 | - |
987
+ | 21.0320 | 40150 | 0.0 | - |
988
+ | 21.0581 | 40200 | 0.0 | - |
989
+ | 21.0843 | 40250 | 0.0 | - |
990
+ | 21.1105 | 40300 | 0.0 | - |
991
+ | 21.1367 | 40350 | 0.0 | - |
992
+ | 21.1629 | 40400 | 0.0 | - |
993
+ | 21.1891 | 40450 | 0.0 | - |
994
+ | 21.2153 | 40500 | 0.0 | - |
995
+ | 21.2415 | 40550 | 0.0 | - |
996
+ | 21.2677 | 40600 | 0.0 | - |
997
+ | 21.2939 | 40650 | 0.0 | - |
998
+ | 21.3201 | 40700 | 0.0 | - |
999
+ | 21.3463 | 40750 | 0.0 | - |
1000
+ | 21.3724 | 40800 | 0.0 | - |
1001
+ | 21.3986 | 40850 | 0.0 | - |
1002
+ | 21.4248 | 40900 | 0.0 | - |
1003
+ | 21.4510 | 40950 | 0.0 | - |
1004
+ | 21.4772 | 41000 | 0.0 | - |
1005
+ | 21.5034 | 41050 | 0.0 | - |
1006
+ | 21.5296 | 41100 | 0.0 | - |
1007
+ | 21.5558 | 41150 | 0.0 | - |
1008
+ | 21.5820 | 41200 | 0.0 | - |
1009
+ | 21.6082 | 41250 | 0.0 | - |
1010
+ | 21.6344 | 41300 | 0.0 | - |
1011
+ | 21.6606 | 41350 | 0.0 | - |
1012
+ | 21.6867 | 41400 | 0.0 | - |
1013
+ | 21.7129 | 41450 | 0.0 | - |
1014
+ | 21.7391 | 41500 | 0.0 | - |
1015
+ | 21.7653 | 41550 | 0.0 | - |
1016
+ | 21.7915 | 41600 | 0.0 | - |
1017
+ | 21.8177 | 41650 | 0.0 | - |
1018
+ | 21.8439 | 41700 | 0.0 | - |
1019
+ | 21.8701 | 41750 | 0.0 | - |
1020
+ | 21.8963 | 41800 | 0.0 | - |
1021
+ | 21.9225 | 41850 | 0.0 | - |
1022
+ | 21.9487 | 41900 | 0.0 | - |
1023
+ | 21.9749 | 41950 | 0.0 | - |
1024
+ | 22.0010 | 42000 | 0.0 | - |
1025
+ | 22.0272 | 42050 | 0.0 | - |
1026
+ | 22.0534 | 42100 | 0.0 | - |
1027
+ | 22.0796 | 42150 | 0.0 | - |
1028
+ | 22.1058 | 42200 | 0.0 | - |
1029
+ | 22.1320 | 42250 | 0.0 | - |
1030
+ | 22.1582 | 42300 | 0.0 | - |
1031
+ | 22.1844 | 42350 | 0.0 | - |
1032
+ | 22.2106 | 42400 | 0.0 | - |
1033
+ | 22.2368 | 42450 | 0.0 | - |
1034
+ | 22.2630 | 42500 | 0.0 | - |
1035
+ | 22.2892 | 42550 | 0.0 | - |
1036
+ | 22.3153 | 42600 | 0.0 | - |
1037
+ | 22.3415 | 42650 | 0.0 | - |
1038
+ | 22.3677 | 42700 | 0.0 | - |
1039
+ | 22.3939 | 42750 | 0.0 | - |
1040
+ | 22.4201 | 42800 | 0.0 | - |
1041
+ | 22.4463 | 42850 | 0.0 | - |
1042
+ | 22.4725 | 42900 | 0.0 | - |
1043
+ | 22.4987 | 42950 | 0.0 | - |
1044
+ | 22.5249 | 43000 | 0.0 | - |
1045
+ | 22.5511 | 43050 | 0.0 | - |
1046
+ | 22.5773 | 43100 | 0.0 | - |
1047
+ | 22.6035 | 43150 | 0.0 | - |
1048
+ | 22.6296 | 43200 | 0.0 | - |
1049
+ | 22.6558 | 43250 | 0.0 | - |
1050
+ | 22.6820 | 43300 | 0.0 | - |
1051
+ | 22.7082 | 43350 | 0.0 | - |
1052
+ | 22.7344 | 43400 | 0.0 | - |
1053
+ | 22.7606 | 43450 | 0.0 | - |
1054
+ | 22.7868 | 43500 | 0.0 | - |
1055
+ | 22.8130 | 43550 | 0.0 | - |
1056
+ | 22.8392 | 43600 | 0.0 | - |
1057
+ | 22.8654 | 43650 | 0.0 | - |
1058
+ | 22.8916 | 43700 | 0.0 | - |
1059
+ | 22.9178 | 43750 | 0.0 | - |
1060
+ | 22.9439 | 43800 | 0.0 | - |
1061
+ | 22.9701 | 43850 | 0.0 | - |
1062
+ | 22.9963 | 43900 | 0.0 | - |
1063
+ | 23.0225 | 43950 | 0.0 | - |
1064
+ | 23.0487 | 44000 | 0.0 | - |
1065
+ | 23.0749 | 44050 | 0.0 | - |
1066
+ | 23.1011 | 44100 | 0.0 | - |
1067
+ | 23.1273 | 44150 | 0.0 | - |
1068
+ | 23.1535 | 44200 | 0.0 | - |
1069
+ | 23.1797 | 44250 | 0.0 | - |
1070
+ | 23.2059 | 44300 | 0.0 | - |
1071
+ | 23.2321 | 44350 | 0.0 | - |
1072
+ | 23.2583 | 44400 | 0.0 | - |
1073
+ | 23.2844 | 44450 | 0.0 | - |
1074
+ | 23.3106 | 44500 | 0.0 | - |
1075
+ | 23.3368 | 44550 | 0.0 | - |
1076
+ | 23.3630 | 44600 | 0.0 | - |
1077
+ | 23.3892 | 44650 | 0.0 | - |
1078
+ | 23.4154 | 44700 | 0.0 | - |
1079
+ | 23.4416 | 44750 | 0.0 | - |
1080
+ | 23.4678 | 44800 | 0.0 | - |
1081
+ | 23.4940 | 44850 | 0.0 | - |
1082
+ | 23.5202 | 44900 | 0.0 | - |
1083
+ | 23.5464 | 44950 | 0.0 | - |
1084
+ | 23.5726 | 45000 | 0.0 | - |
1085
+ | 23.5987 | 45050 | 0.0 | - |
1086
+ | 23.6249 | 45100 | 0.0 | - |
1087
+ | 23.6511 | 45150 | 0.0 | - |
1088
+ | 23.6773 | 45200 | 0.0 | - |
1089
+ | 23.7035 | 45250 | 0.0 | - |
1090
+ | 23.7297 | 45300 | 0.0 | - |
1091
+ | 23.7559 | 45350 | 0.0 | - |
1092
+ | 23.7821 | 45400 | 0.0 | - |
1093
+ | 23.8083 | 45450 | 0.0 | - |
1094
+ | 23.8345 | 45500 | 0.0 | - |
1095
+ | 23.8607 | 45550 | 0.0 | - |
1096
+ | 23.8869 | 45600 | 0.0 | - |
1097
+ | 23.9130 | 45650 | 0.0 | - |
1098
+ | 23.9392 | 45700 | 0.0 | - |
1099
+ | 23.9654 | 45750 | 0.0 | - |
1100
+ | 23.9916 | 45800 | 0.0 | - |
1101
+ | 24.0178 | 45850 | 0.0 | - |
1102
+ | 24.0440 | 45900 | 0.0 | - |
1103
+ | 24.0702 | 45950 | 0.0 | - |
1104
+ | 24.0964 | 46000 | 0.0 | - |
1105
+ | 24.1226 | 46050 | 0.0 | - |
1106
+ | 24.1488 | 46100 | 0.0 | - |
1107
+ | 24.1750 | 46150 | 0.0 | - |
1108
+ | 24.2012 | 46200 | 0.0 | - |
1109
+ | 24.2273 | 46250 | 0.0 | - |
1110
+ | 24.2535 | 46300 | 0.0 | - |
1111
+ | 24.2797 | 46350 | 0.0 | - |
1112
+ | 24.3059 | 46400 | 0.0 | - |
1113
+ | 24.3321 | 46450 | 0.0 | - |
1114
+ | 24.3583 | 46500 | 0.0 | - |
1115
+ | 24.3845 | 46550 | 0.0 | - |
1116
+ | 24.4107 | 46600 | 0.0 | - |
1117
+ | 24.4369 | 46650 | 0.0 | - |
1118
+ | 24.4631 | 46700 | 0.0 | - |
1119
+ | 24.4893 | 46750 | 0.0 | - |
1120
+ | 24.5155 | 46800 | 0.0 | - |
1121
+ | 24.5416 | 46850 | 0.0 | - |
1122
+ | 24.5678 | 46900 | 0.0 | - |
1123
+ | 24.5940 | 46950 | 0.0 | - |
1124
+ | 24.6202 | 47000 | 0.0 | - |
1125
+ | 24.6464 | 47050 | 0.0 | - |
1126
+ | 24.6726 | 47100 | 0.0 | - |
1127
+ | 24.6988 | 47150 | 0.0 | - |
1128
+ | 24.7250 | 47200 | 0.0 | - |
1129
+ | 24.7512 | 47250 | 0.0 | - |
1130
+ | 24.7774 | 47300 | 0.0 | - |
1131
+ | 24.8036 | 47350 | 0.0 | - |
1132
+ | 24.8298 | 47400 | 0.0 | - |
1133
+ | 24.8559 | 47450 | 0.0 | - |
1134
+ | 24.8821 | 47500 | 0.0 | - |
1135
+ | 24.9083 | 47550 | 0.0 | - |
1136
+ | 24.9345 | 47600 | 0.0 | - |
1137
+ | 24.9607 | 47650 | 0.0 | - |
1138
+ | 24.9869 | 47700 | 0.0 | - |
1139
+ | 25.0131 | 47750 | 0.0 | - |
1140
+ | 25.0393 | 47800 | 0.0 | - |
1141
+ | 25.0655 | 47850 | 0.0 | - |
1142
+ | 25.0917 | 47900 | 0.0 | - |
1143
+ | 25.1179 | 47950 | 0.0 | - |
1144
+ | 25.1441 | 48000 | 0.0 | - |
1145
+ | 25.1702 | 48050 | 0.0 | - |
1146
+ | 25.1964 | 48100 | 0.0 | - |
1147
+ | 25.2226 | 48150 | 0.0 | - |
1148
+ | 25.2488 | 48200 | 0.0 | - |
1149
+ | 25.2750 | 48250 | 0.0 | - |
1150
+ | 25.3012 | 48300 | 0.0 | - |
1151
+ | 25.3274 | 48350 | 0.0 | - |
1152
+ | 25.3536 | 48400 | 0.0 | - |
1153
+ | 25.3798 | 48450 | 0.0 | - |
1154
+ | 25.4060 | 48500 | 0.0 | - |
1155
+ | 25.4322 | 48550 | 0.0 | - |
1156
+ | 25.4584 | 48600 | 0.0 | - |
1157
+ | 25.4845 | 48650 | 0.0 | - |
1158
+ | 25.5107 | 48700 | 0.0 | - |
1159
+ | 25.5369 | 48750 | 0.0 | - |
1160
+ | 25.5631 | 48800 | 0.0 | - |
1161
+ | 25.5893 | 48850 | 0.0 | - |
1162
+ | 25.6155 | 48900 | 0.0 | - |
1163
+ | 25.6417 | 48950 | 0.0 | - |
1164
+ | 25.6679 | 49000 | 0.0 | - |
1165
+ | 25.6941 | 49050 | 0.0 | - |
1166
+ | 25.7203 | 49100 | 0.0 | - |
1167
+ | 25.7465 | 49150 | 0.0 | - |
1168
+ | 25.7727 | 49200 | 0.0 | - |
1169
+ | 25.7988 | 49250 | 0.0 | - |
1170
+ | 25.8250 | 49300 | 0.0 | - |
1171
+ | 25.8512 | 49350 | 0.0 | - |
1172
+ | 25.8774 | 49400 | 0.0 | - |
1173
+ | 25.9036 | 49450 | 0.0 | - |
1174
+ | 25.9298 | 49500 | 0.0 | - |
1175
+ | 25.9560 | 49550 | 0.0 | - |
1176
+ | 25.9822 | 49600 | 0.0 | - |
1177
+ | 26.0084 | 49650 | 0.0 | - |
1178
+ | 26.0346 | 49700 | 0.0 | - |
1179
+ | 26.0608 | 49750 | 0.0 | - |
1180
+ | 26.0870 | 49800 | 0.0 | - |
1181
+ | 26.1131 | 49850 | 0.0 | - |
1182
+ | 26.1393 | 49900 | 0.0 | - |
1183
+ | 26.1655 | 49950 | 0.0 | - |
1184
+ | 26.1917 | 50000 | 0.0 | - |
1185
+ | 26.2179 | 50050 | 0.0 | - |
1186
+ | 26.2441 | 50100 | 0.0 | - |
1187
+ | 26.2703 | 50150 | 0.0 | - |
1188
+ | 26.2965 | 50200 | 0.0 | - |
1189
+ | 26.3227 | 50250 | 0.0 | - |
1190
+ | 26.3489 | 50300 | 0.0 | - |
1191
+ | 26.3751 | 50350 | 0.0 | - |
1192
+ | 26.4013 | 50400 | 0.0 | - |
1193
+ | 26.4274 | 50450 | 0.0 | - |
1194
+ | 26.4536 | 50500 | 0.0 | - |
1195
+ | 26.4798 | 50550 | 0.0 | - |
1196
+ | 26.5060 | 50600 | 0.0 | - |
1197
+ | 26.5322 | 50650 | 0.0 | - |
1198
+ | 26.5584 | 50700 | 0.0 | - |
1199
+ | 26.5846 | 50750 | 0.0 | - |
1200
+ | 26.6108 | 50800 | 0.0 | - |
1201
+ | 26.6370 | 50850 | 0.0 | - |
1202
+ | 26.6632 | 50900 | 0.0 | - |
1203
+ | 26.6894 | 50950 | 0.0 | - |
1204
+ | 26.7156 | 51000 | 0.0 | - |
1205
+ | 26.7417 | 51050 | 0.0 | - |
1206
+ | 26.7679 | 51100 | 0.0 | - |
1207
+ | 26.7941 | 51150 | 0.0 | - |
1208
+ | 26.8203 | 51200 | 0.0 | - |
1209
+ | 26.8465 | 51250 | 0.0 | - |
1210
+ | 26.8727 | 51300 | 0.0 | - |
1211
+ | 26.8989 | 51350 | 0.0 | - |
1212
+ | 26.9251 | 51400 | 0.0 | - |
1213
+ | 26.9513 | 51450 | 0.0 | - |
1214
+ | 26.9775 | 51500 | 0.0 | - |
1215
+ | 27.0037 | 51550 | 0.0 | - |
1216
+ | 27.0299 | 51600 | 0.0 | - |
1217
+ | 27.0561 | 51650 | 0.0 | - |
1218
+ | 27.0822 | 51700 | 0.0 | - |
1219
+ | 27.1084 | 51750 | 0.0 | - |
1220
+ | 27.1346 | 51800 | 0.0 | - |
1221
+ | 27.1608 | 51850 | 0.0 | - |
1222
+ | 27.1870 | 51900 | 0.0 | - |
1223
+ | 27.2132 | 51950 | 0.0 | - |
1224
+ | 27.2394 | 52000 | 0.0 | - |
1225
+ | 27.2656 | 52050 | 0.0 | - |
1226
+ | 27.2918 | 52100 | 0.0 | - |
1227
+ | 27.3180 | 52150 | 0.0 | - |
1228
+ | 27.3442 | 52200 | 0.0 | - |
1229
+ | 27.3704 | 52250 | 0.0 | - |
1230
+ | 27.3965 | 52300 | 0.0 | - |
1231
+ | 27.4227 | 52350 | 0.0 | - |
1232
+ | 27.4489 | 52400 | 0.0 | - |
1233
+ | 27.4751 | 52450 | 0.0 | - |
1234
+ | 27.5013 | 52500 | 0.0 | - |
1235
+ | 27.5275 | 52550 | 0.0 | - |
1236
+ | 27.5537 | 52600 | 0.0 | - |
1237
+ | 27.5799 | 52650 | 0.0 | - |
1238
+ | 27.6061 | 52700 | 0.0 | - |
1239
+ | 27.6323 | 52750 | 0.0 | - |
1240
+ | 27.6585 | 52800 | 0.0 | - |
1241
+ | 27.6847 | 52850 | 0.0 | - |
1242
+ | 27.7108 | 52900 | 0.0 | - |
1243
+ | 27.7370 | 52950 | 0.0 | - |
1244
+ | 27.7632 | 53000 | 0.0 | - |
1245
+ | 27.7894 | 53050 | 0.0 | - |
1246
+ | 27.8156 | 53100 | 0.0 | - |
1247
+ | 27.8418 | 53150 | 0.0 | - |
1248
+ | 27.8680 | 53200 | 0.0 | - |
1249
+ | 27.8942 | 53250 | 0.0 | - |
1250
+ | 27.9204 | 53300 | 0.0 | - |
1251
+ | 27.9466 | 53350 | 0.0 | - |
1252
+ | 27.9728 | 53400 | 0.0 | - |
1253
+ | 27.9990 | 53450 | 0.0 | - |
1254
+ | 28.0251 | 53500 | 0.0 | - |
1255
+ | 28.0513 | 53550 | 0.0 | - |
1256
+ | 28.0775 | 53600 | 0.0 | - |
1257
+ | 28.1037 | 53650 | 0.0 | - |
1258
+ | 28.1299 | 53700 | 0.0 | - |
1259
+ | 28.1561 | 53750 | 0.0 | - |
1260
+ | 28.1823 | 53800 | 0.0 | - |
1261
+ | 28.2085 | 53850 | 0.0 | - |
1262
+ | 28.2347 | 53900 | 0.0 | - |
1263
+ | 28.2609 | 53950 | 0.0 | - |
1264
+ | 28.2871 | 54000 | 0.0 | - |
1265
+ | 28.3133 | 54050 | 0.0 | - |
1266
+ | 28.3394 | 54100 | 0.0 | - |
1267
+ | 28.3656 | 54150 | 0.0 | - |
1268
+ | 28.3918 | 54200 | 0.0 | - |
1269
+ | 28.4180 | 54250 | 0.0 | - |
1270
+ | 28.4442 | 54300 | 0.0 | - |
1271
+ | 28.4704 | 54350 | 0.0 | - |
1272
+ | 28.4966 | 54400 | 0.0 | - |
1273
+ | 28.5228 | 54450 | 0.0 | - |
1274
+ | 28.5490 | 54500 | 0.0 | - |
1275
+ | 28.5752 | 54550 | 0.0 | - |
1276
+ | 28.6014 | 54600 | 0.0 | - |
1277
+ | 28.6276 | 54650 | 0.0 | - |
1278
+ | 28.6537 | 54700 | 0.0 | - |
1279
+ | 28.6799 | 54750 | 0.0 | - |
1280
+ | 28.7061 | 54800 | 0.0 | - |
1281
+ | 28.7323 | 54850 | 0.0 | - |
1282
+ | 28.7585 | 54900 | 0.0 | - |
1283
+ | 28.7847 | 54950 | 0.0 | - |
1284
+ | 28.8109 | 55000 | 0.0 | - |
1285
+ | 28.8371 | 55050 | 0.0 | - |
1286
+ | 28.8633 | 55100 | 0.0 | - |
1287
+ | 28.8895 | 55150 | 0.0 | - |
1288
+ | 28.9157 | 55200 | 0.0 | - |
1289
+ | 28.9419 | 55250 | 0.0 | - |
1290
+ | 28.9680 | 55300 | 0.0 | - |
1291
+ | 28.9942 | 55350 | 0.0 | - |
1292
+ | 29.0204 | 55400 | 0.0 | - |
1293
+ | 29.0466 | 55450 | 0.0 | - |
1294
+ | 29.0728 | 55500 | 0.0 | - |
1295
+ | 29.0990 | 55550 | 0.0 | - |
1296
+ | 29.1252 | 55600 | 0.0 | - |
1297
+ | 29.1514 | 55650 | 0.0 | - |
1298
+ | 29.1776 | 55700 | 0.0 | - |
1299
+ | 29.2038 | 55750 | 0.0 | - |
1300
+ | 29.2300 | 55800 | 0.0 | - |
1301
+ | 29.2562 | 55850 | 0.0 | - |
1302
+ | 29.2823 | 55900 | 0.0 | - |
1303
+ | 29.3085 | 55950 | 0.0 | - |
1304
+ | 29.3347 | 56000 | 0.0 | - |
1305
+ | 29.3609 | 56050 | 0.0 | - |
1306
+ | 29.3871 | 56100 | 0.0 | - |
1307
+ | 29.4133 | 56150 | 0.0 | - |
1308
+ | 29.4395 | 56200 | 0.0 | - |
1309
+ | 29.4657 | 56250 | 0.0 | - |
1310
+ | 29.4919 | 56300 | 0.0 | - |
1311
+ | 29.5181 | 56350 | 0.0 | - |
1312
+ | 29.5443 | 56400 | 0.0 | - |
1313
+ | 29.5705 | 56450 | 0.0 | - |
1314
+ | 29.5966 | 56500 | 0.0 | - |
1315
+ | 29.6228 | 56550 | 0.0 | - |
1316
+ | 29.6490 | 56600 | 0.0 | - |
1317
+ | 29.6752 | 56650 | 0.0 | - |
1318
+ | 29.7014 | 56700 | 0.0 | - |
1319
+ | 29.7276 | 56750 | 0.0 | - |
1320
+ | 29.7538 | 56800 | 0.0 | - |
1321
+ | 29.7800 | 56850 | 0.0 | - |
1322
+ | 29.8062 | 56900 | 0.0 | - |
1323
+ | 29.8324 | 56950 | 0.0 | - |
1324
+ | 29.8586 | 57000 | 0.0 | - |
1325
+ | 29.8848 | 57050 | 0.0 | - |
1326
+ | 29.9109 | 57100 | 0.0 | - |
1327
+ | 29.9371 | 57150 | 0.0 | - |
1328
+ | 29.9633 | 57200 | 0.0 | - |
1329
+ | 29.9895 | 57250 | 0.0 | - |
1330
+
1331
+ ### Framework Versions
1332
+ - Python: 3.10.12
1333
+ - SetFit: 1.1.0
1334
+ - Sentence Transformers: 3.3.1
1335
+ - Transformers: 4.44.2
1336
+ - PyTorch: 2.2.0a0+81ea7a4
1337
+ - Datasets: 3.2.0
1338
+ - Tokenizers: 0.19.1
1339
+
1340
+ ## Citation
1341
+
1342
+ ### BibTeX
1343
+ ```bibtex
1344
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
1345
+ doi = {10.48550/ARXIV.2209.11055},
1346
+ url = {https://arxiv.org/abs/2209.11055},
1347
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
1348
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
1349
+ title = {Efficient Few-Shot Learning Without Prompts},
1350
+ publisher = {arXiv},
1351
+ year = {2022},
1352
+ copyright = {Creative Commons Attribution 4.0 International}
1353
+ }
1354
+ ```
1355
+
1356
+ <!--
1357
+ ## Glossary
1358
+
1359
+ *Clearly define terms in order to be accessible across audiences.*
1360
+ -->
1361
+
1362
+ <!--
1363
+ ## Model Card Authors
1364
+
1365
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
1366
+ -->
1367
+
1368
+ <!--
1369
+ ## Model Card Contact
1370
+
1371
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
1372
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mini1013/master_domain",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "tokenizer_class": "BertTokenizer",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.44.2",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 32000
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.2.0a0+81ea7a4"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "normalize_embeddings": false,
3
+ "labels": null
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b0220308983acedc645a1b08d63955213a5c585df8ba8ca0ed2757c3e0a33a28
3
+ size 442494816
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5645dff0bb1d5e9fd42c75cf9229edc3cbf30b307b173dcb2a1024ca51c44344
3
+ size 105535
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "[SEP]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "[MASK]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "[SEP]",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[CLS]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[PAD]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "[CLS]",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": false,
49
+ "eos_token": "[SEP]",
50
+ "mask_token": "[MASK]",
51
+ "max_length": 512,
52
+ "model_max_length": 512,
53
+ "never_split": null,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "[PAD]",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "sep_token": "[SEP]",
59
+ "stride": 0,
60
+ "strip_accents": null,
61
+ "tokenize_chinese_chars": true,
62
+ "tokenizer_class": "BertTokenizer",
63
+ "truncation_side": "right",
64
+ "truncation_strategy": "longest_first",
65
+ "unk_token": "[UNK]"
66
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff