stephantulkens commited on
Commit
60b9af9
1 Parent(s): 90f7e25

Upload folder using huggingface_hub

Browse files
Files changed (2) hide show
  1. README.md +24 -13
  2. model.safetensors +3 -0
README.md CHANGED
@@ -113,17 +113,15 @@ language:
113
  - zu
114
  library_name: model2vec
115
  license: mit
116
- model_name: M2V_base_multilingual
117
  tags:
118
  - embeddings
119
  - static-embeddings
120
  ---
121
 
122
- # M2V_base_multilingual Model Card
123
-
124
- Model2Vec distills a Sentence Transformer into a small, static model.
125
- This model is ideal for applications requiring fast, lightweight embeddings.
126
 
 
127
 
128
 
129
  ## Installation
@@ -134,10 +132,14 @@ pip install model2vec
134
  ```
135
 
136
  ## Usage
137
- A StaticModel can be loaded using the `from_pretrained` method:
138
  ```python
139
  from model2vec import StaticModel
140
- model = StaticModel.from_pretrained("minishlab/M2V_base_output")
 
 
 
 
141
  embeddings = model.encode(["Example sentence"])
142
  ```
143
 
@@ -161,16 +163,25 @@ Model2vec creates a small, fast, and powerful model that outperforms other stati
161
 
162
  It works by passing a vocabulary through a sentence transformer model, then reducing the dimensionality of the resulting embeddings using PCA, and finally weighting the embeddings using zipf weighting. During inference, we simply take the mean of all token embeddings occurring in a sentence.
163
 
164
- ## Citation
165
-
166
- Please cite the [Model2Vec repository](https://github.com/MinishLab/model2vec) if you use this model in your work.
167
-
168
  ## Additional Resources
169
 
 
170
  - [Model2Vec Repo](https://github.com/MinishLab/model2vec)
171
  - [Model2Vec Results](https://github.com/MinishLab/model2vec?tab=readme-ov-file#results)
172
  - [Model2Vec Tutorials](https://github.com/MinishLab/model2vec/tree/main/tutorials)
173
 
174
- ## Model Authors
 
 
 
 
175
 
176
- Model2Vec was developed by the [Minish Lab](https://github.com/MinishLab) team consisting of Stephan Tulkens and Thomas van Dongen.
 
 
 
 
 
 
 
 
 
113
  - zu
114
  library_name: model2vec
115
  license: mit
116
+ model_name: minishlab/m2v_multilingual_output
117
  tags:
118
  - embeddings
119
  - static-embeddings
120
  ---
121
 
122
+ # minishlab/m2v_multilingual_output Model Card
 
 
 
123
 
124
+ This [Model2Vec](https://github.com/MinishLab/model2vec) model is a distilled version of the [sentence-transformers/LaBSE](https://huggingface.co/sentence-transformers/LaBSE) Sentence Transformer. It uses static embeddings, allowing text embeddings to be computed orders of magnitude faster on both GPU and CPU. It is designed for applications where computational resources are limited or where real-time performance is critical.
125
 
126
 
127
  ## Installation
 
132
  ```
133
 
134
  ## Usage
135
+ Load this model using the `from_pretrained` method:
136
  ```python
137
  from model2vec import StaticModel
138
+
139
+ # Load a pretrained Model2Vec model
140
+ model = StaticModel.from_pretrained("minishlab/m2v_multilingual_output")
141
+
142
+ # Compute text embeddings
143
  embeddings = model.encode(["Example sentence"])
144
  ```
145
 
 
163
 
164
  It works by passing a vocabulary through a sentence transformer model, then reducing the dimensionality of the resulting embeddings using PCA, and finally weighting the embeddings using zipf weighting. During inference, we simply take the mean of all token embeddings occurring in a sentence.
165
 
 
 
 
 
166
  ## Additional Resources
167
 
168
+ - [All Model2Vec models on the hub](https://huggingface.co/models?library=model2vec)
169
  - [Model2Vec Repo](https://github.com/MinishLab/model2vec)
170
  - [Model2Vec Results](https://github.com/MinishLab/model2vec?tab=readme-ov-file#results)
171
  - [Model2Vec Tutorials](https://github.com/MinishLab/model2vec/tree/main/tutorials)
172
 
173
+ ## Library Authors
174
+
175
+ Model2Vec was developed by the [Minish Lab](https://github.com/MinishLab) team consisting of [Stephan Tulkens](https://github.com/stephantul) and [Thomas van Dongen](https://github.com/Pringled).
176
+
177
+ ## Citation
178
 
179
+ Please cite the [Model2Vec repository](https://github.com/MinishLab/model2vec) if you use this model in your work.
180
+ ```
181
+ @software{minishlab2024model2vec,
182
+ authors = {Stephan Tulkens, Thomas van Dongen},
183
+ title = {Model2Vec: Turn any Sentence Transformer into a Small Fast Model},
184
+ year = {2024},
185
+ url = {https://github.com/MinishLab/model2vec},
186
+ }
187
+ ```
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:11e6f20c2321711c429dbb3987591eb4692a24a0af4f8118863386345c0e9b8d
3
+ size 513079384