File size: 1,684 Bytes
adcc45f 4082e52 adcc45f a3caf05 adcc45f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
---
title: chinese-alpaca-pro-33b-merged
emoji: 📚
colorFrom: gray
colorTo: red
sdk: gradio
sdk_version: 3.23.0
app_file: app.py
pinned: false
---
加入中文词表并继续预训练中文Embedding,并在此基础上继续使用指令数据集finetuning,得到的中文Alpaca-pro-33B模型。
模型转换用到的相关base及lora模型如下:
- base-model: elinas/llama-30b-hf-transformers-4.29
- lora-model: ziqingyang/chinese-llama-plus-lora-33b, ziqingyang/chinese-alpaca-pro-lora-33b
详情可参考:https://github.com/ymcui/Chinese-LLaMA-Alpaca/releases/tag/v5.0
### 使用方法参考
1. 安装模块包
```bash
pip install sentencepiece
pip install transformers>=4.28.0
```
2. 生成文本
```python
import torch
import transformers
from transformers import LlamaTokenizer, LlamaForCausalLM
def generate_prompt(text):
return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{text}
### Response:"""
tokenizer = LlamaTokenizer.from_pretrained('minlik/chinese-alpaca-pro-33b-merged')
model = LlamaForCausalLM.from_pretrained('minlik/chinese-alpaca-pro-33b-merged').half().to('cuda')
model.eval()
text = '第一个登上月球的人是谁?'
prompt = generate_prompt(text)
input_ids = tokenizer.encode(prompt, return_tensors='pt').to('cuda')
with torch.no_grad():
output_ids = model.generate(
input_ids=input_ids,
max_new_tokens=128,
temperature=1,
top_k=40,
top_p=0.9,
repetition_penalty=1.15
).cuda()
output = tokenizer.decode(output_ids[0], skip_special_tokens=True)
print(output.replace(prompt, '').strip())
``` |