minmingzhu02
commited on
Commit
•
6c364c7
1
Parent(s):
47dc8aa
Upload folder using huggingface_hub
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- README.md +9 -0
- adapter_config.json +23 -0
- adapter_model.safetensors +3 -0
- checkpoint-1000/README.md +9 -0
- checkpoint-1000/adapter_config.json +23 -0
- checkpoint-1000/adapter_model.safetensors +3 -0
- checkpoint-1000/gaudi_config.json +10 -0
- checkpoint-1000/global_step1000/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- checkpoint-1000/global_step1000/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- checkpoint-1000/global_step1000/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
- checkpoint-1000/global_step1000/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
- checkpoint-1000/global_step1000/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt +3 -0
- checkpoint-1000/global_step1000/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt +3 -0
- checkpoint-1000/global_step1000/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt +3 -0
- checkpoint-1000/global_step1000/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt +3 -0
- checkpoint-1000/global_step1000/mp_rank_00_model_states.pt +3 -0
- checkpoint-1000/latest +1 -0
- checkpoint-1000/rng_state_0.pth +3 -0
- checkpoint-1000/rng_state_1.pth +3 -0
- checkpoint-1000/rng_state_2.pth +3 -0
- checkpoint-1000/rng_state_3.pth +3 -0
- checkpoint-1000/rng_state_4.pth +3 -0
- checkpoint-1000/rng_state_5.pth +3 -0
- checkpoint-1000/rng_state_6.pth +3 -0
- checkpoint-1000/rng_state_7.pth +3 -0
- checkpoint-1000/special_tokens_map.json +24 -0
- checkpoint-1000/tokenizer.json +0 -0
- checkpoint-1000/tokenizer.model +3 -0
- checkpoint-1000/tokenizer_config.json +42 -0
- checkpoint-1000/trainer_state.json +1021 -0
- checkpoint-1000/training_args.bin +3 -0
- checkpoint-1000/zero_to_fp32.py +592 -0
- checkpoint-1500/README.md +9 -0
- checkpoint-1500/adapter_config.json +23 -0
- checkpoint-1500/adapter_model.safetensors +3 -0
- checkpoint-1500/gaudi_config.json +10 -0
- checkpoint-1500/global_step1500/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- checkpoint-1500/global_step1500/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- checkpoint-1500/global_step1500/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
- checkpoint-1500/global_step1500/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
- checkpoint-1500/global_step1500/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt +3 -0
- checkpoint-1500/global_step1500/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt +3 -0
- checkpoint-1500/global_step1500/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt +3 -0
- checkpoint-1500/global_step1500/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt +3 -0
- checkpoint-1500/global_step1500/mp_rank_00_model_states.pt +3 -0
- checkpoint-1500/latest +1 -0
- checkpoint-1500/rng_state_0.pth +3 -0
- checkpoint-1500/rng_state_1.pth +3 -0
- checkpoint-1500/rng_state_2.pth +3 -0
- checkpoint-1500/rng_state_3.pth +3 -0
README.md
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
---
|
4 |
+
## Training procedure
|
5 |
+
|
6 |
+
### Framework versions
|
7 |
+
|
8 |
+
|
9 |
+
- PEFT 0.4.0
|
adapter_config.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"auto_mapping": null,
|
3 |
+
"base_model_name_or_path": "mistralai/Mistral-7B-v0.1",
|
4 |
+
"bias": "none",
|
5 |
+
"fan_in_fan_out": false,
|
6 |
+
"inference_mode": true,
|
7 |
+
"init_lora_weights": true,
|
8 |
+
"layers_pattern": null,
|
9 |
+
"layers_to_transform": null,
|
10 |
+
"lora_alpha": 32,
|
11 |
+
"lora_dropout": 0.1,
|
12 |
+
"modules_to_save": null,
|
13 |
+
"peft_type": "LORA",
|
14 |
+
"r": 8,
|
15 |
+
"revision": null,
|
16 |
+
"target_modules": [
|
17 |
+
"q_proj",
|
18 |
+
"k_proj",
|
19 |
+
"v_proj",
|
20 |
+
"o_proj"
|
21 |
+
],
|
22 |
+
"task_type": "CAUSAL_LM"
|
23 |
+
}
|
adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c1677aac55780016aa5899bb8861521dd55e5822e46596889750149cff62ff3d
|
3 |
+
size 13665592
|
checkpoint-1000/README.md
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
---
|
4 |
+
## Training procedure
|
5 |
+
|
6 |
+
### Framework versions
|
7 |
+
|
8 |
+
|
9 |
+
- PEFT 0.4.0
|
checkpoint-1000/adapter_config.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"auto_mapping": null,
|
3 |
+
"base_model_name_or_path": "mistralai/Mistral-7B-v0.1",
|
4 |
+
"bias": "none",
|
5 |
+
"fan_in_fan_out": false,
|
6 |
+
"inference_mode": true,
|
7 |
+
"init_lora_weights": true,
|
8 |
+
"layers_pattern": null,
|
9 |
+
"layers_to_transform": null,
|
10 |
+
"lora_alpha": 32,
|
11 |
+
"lora_dropout": 0.1,
|
12 |
+
"modules_to_save": null,
|
13 |
+
"peft_type": "LORA",
|
14 |
+
"r": 8,
|
15 |
+
"revision": null,
|
16 |
+
"target_modules": [
|
17 |
+
"q_proj",
|
18 |
+
"k_proj",
|
19 |
+
"v_proj",
|
20 |
+
"o_proj"
|
21 |
+
],
|
22 |
+
"task_type": "CAUSAL_LM"
|
23 |
+
}
|
checkpoint-1000/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5772181171b699a38742439a65343fea3c0d07127d705466164039af49cfa56f
|
3 |
+
size 13665592
|
checkpoint-1000/gaudi_config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"autocast_bf16_ops": null,
|
3 |
+
"autocast_fp32_ops": null,
|
4 |
+
"optimum_version": "1.20.0",
|
5 |
+
"transformers_version": "4.38.2",
|
6 |
+
"use_dynamic_shapes": false,
|
7 |
+
"use_fused_adam": true,
|
8 |
+
"use_fused_clip_norm": true,
|
9 |
+
"use_torch_autocast": false
|
10 |
+
}
|
checkpoint-1000/global_step1000/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:73655cd44c220b606f34c4b8a97c2f2f4f0d2e53e7853b0d51a512d71268baff
|
3 |
+
size 10229904
|
checkpoint-1000/global_step1000/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9d2b531c24e8ab4583b7619ad87879b44782f610c515f0dbb1ec57bee8fc3536
|
3 |
+
size 10229904
|
checkpoint-1000/global_step1000/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f9923bbd32fcee5a6a59ebaee726bbb969ccbbc3a2a0a15946e64b1da79bc797
|
3 |
+
size 10229968
|
checkpoint-1000/global_step1000/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:55422d1f8bf886ae6916aa3cd66f30fe0135a7c3fd5faa9355e190eb7ef8bbd6
|
3 |
+
size 10229968
|
checkpoint-1000/global_step1000/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d6e4c1960b417fbc03f9eb51501b34b5d735600e0e88be1a9816a07da07cb6aa
|
3 |
+
size 10229968
|
checkpoint-1000/global_step1000/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8c41b5dafa83796ef1ea4787beb395d018c601c2f49ce409a425eb41f97077a6
|
3 |
+
size 10229968
|
checkpoint-1000/global_step1000/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:60ff711983d46faef174522542ca03ed4c9e62a8cdebb770d47e41ed1c89ad53
|
3 |
+
size 10229968
|
checkpoint-1000/global_step1000/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:db5f2d56d9188a731bbdc37489e2c06f27abd5777aacb3d5336b3c66b56e7562
|
3 |
+
size 10229968
|
checkpoint-1000/global_step1000/mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:78de1143b9c7f4ef36d3b294b5e19aac01912b1c9b3320d5c57c657e8a8d379d
|
3 |
+
size 13740082
|
checkpoint-1000/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step1000
|
checkpoint-1000/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a1a71ef746d5605c01125c52c8992ee3510b53dee333bdcf6038404cc4d18369
|
3 |
+
size 18032
|
checkpoint-1000/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:33c7e0bcd6392f33147cbe763b8ba2d23a5454e89548d59fbc6c27df91554ee5
|
3 |
+
size 18032
|
checkpoint-1000/rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4f0feed945f36ceac4ad5c1581f6628e186e73f61311020fa7b54b9d862cf724
|
3 |
+
size 18032
|
checkpoint-1000/rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:48e8f54d6e56f4ecec8a7f5bc0ac31bbca49207f39eb837035e6556788a2a778
|
3 |
+
size 18032
|
checkpoint-1000/rng_state_4.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:46c64c3e1f93ef4f705341ce58f7c54a4cb9c25883788a04f1a7e46450e094f9
|
3 |
+
size 18032
|
checkpoint-1000/rng_state_5.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:96b084a3807172e1df4b2e1b655a5fe5318c69f12b4d3a90e206cfb66f5dccca
|
3 |
+
size 18032
|
checkpoint-1000/rng_state_6.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b42ad7b6efe463842f1ea4edf25c90bb719e313c9d7e8ae66340ac836cee85e5
|
3 |
+
size 18032
|
checkpoint-1000/rng_state_7.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a116663f3867f3cb87c1e28176d22d33fff4eb405bd7bfd6a5bd4cf1755ab28e
|
3 |
+
size 18032
|
checkpoint-1000/special_tokens_map.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "</s>",
|
17 |
+
"unk_token": {
|
18 |
+
"content": "<unk>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
}
|
24 |
+
}
|
checkpoint-1000/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-1000/tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
|
3 |
+
size 493443
|
checkpoint-1000/tokenizer_config.json
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"0": {
|
6 |
+
"content": "<unk>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"1": {
|
14 |
+
"content": "<s>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"2": {
|
22 |
+
"content": "</s>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
}
|
29 |
+
},
|
30 |
+
"additional_special_tokens": [],
|
31 |
+
"bos_token": "<s>",
|
32 |
+
"clean_up_tokenization_spaces": false,
|
33 |
+
"eos_token": "</s>",
|
34 |
+
"legacy": true,
|
35 |
+
"model_max_length": 1000000000000000019884624838656,
|
36 |
+
"pad_token": "</s>",
|
37 |
+
"sp_model_kwargs": {},
|
38 |
+
"spaces_between_special_tokens": false,
|
39 |
+
"tokenizer_class": "LlamaTokenizer",
|
40 |
+
"unk_token": "<unk>",
|
41 |
+
"use_default_system_prompt": false
|
42 |
+
}
|
checkpoint-1000/trainer_state.json
ADDED
@@ -0,0 +1,1021 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 0.9883864591055103,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 1000,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.01,
|
13 |
+
"grad_norm": 1.2311009168624878,
|
14 |
+
"learning_rate": 5.6012058970266934e-05,
|
15 |
+
"loss": 1.6789,
|
16 |
+
"max_memory_allocated (GB)": 91.88,
|
17 |
+
"memory_allocated (GB)": 14.99,
|
18 |
+
"step": 10,
|
19 |
+
"total_memory_available (GB)": 94.62
|
20 |
+
},
|
21 |
+
{
|
22 |
+
"epoch": 0.02,
|
23 |
+
"grad_norm": 1.4872009754180908,
|
24 |
+
"learning_rate": 7.287336883921704e-05,
|
25 |
+
"loss": 1.3884,
|
26 |
+
"max_memory_allocated (GB)": 91.88,
|
27 |
+
"memory_allocated (GB)": 14.99,
|
28 |
+
"step": 20,
|
29 |
+
"total_memory_available (GB)": 94.62
|
30 |
+
},
|
31 |
+
{
|
32 |
+
"epoch": 0.03,
|
33 |
+
"grad_norm": 0.7868104577064514,
|
34 |
+
"learning_rate": 8.273660282559241e-05,
|
35 |
+
"loss": 1.2404,
|
36 |
+
"max_memory_allocated (GB)": 91.88,
|
37 |
+
"memory_allocated (GB)": 14.99,
|
38 |
+
"step": 30,
|
39 |
+
"total_memory_available (GB)": 94.62
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.04,
|
43 |
+
"grad_norm": 0.35713163018226624,
|
44 |
+
"learning_rate": 8.973467870816715e-05,
|
45 |
+
"loss": 1.2036,
|
46 |
+
"max_memory_allocated (GB)": 91.88,
|
47 |
+
"memory_allocated (GB)": 14.99,
|
48 |
+
"step": 40,
|
49 |
+
"total_memory_available (GB)": 94.62
|
50 |
+
},
|
51 |
+
{
|
52 |
+
"epoch": 0.05,
|
53 |
+
"grad_norm": 0.3057297468185425,
|
54 |
+
"learning_rate": 9.516280807158375e-05,
|
55 |
+
"loss": 1.1788,
|
56 |
+
"max_memory_allocated (GB)": 91.88,
|
57 |
+
"memory_allocated (GB)": 14.99,
|
58 |
+
"step": 50,
|
59 |
+
"total_memory_available (GB)": 94.62
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"epoch": 0.06,
|
63 |
+
"grad_norm": 0.3608625531196594,
|
64 |
+
"learning_rate": 9.959791269454252e-05,
|
65 |
+
"loss": 1.1525,
|
66 |
+
"max_memory_allocated (GB)": 91.88,
|
67 |
+
"memory_allocated (GB)": 14.99,
|
68 |
+
"step": 60,
|
69 |
+
"total_memory_available (GB)": 94.62
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.07,
|
73 |
+
"grad_norm": 0.3684042990207672,
|
74 |
+
"learning_rate": 9.959204487506375e-05,
|
75 |
+
"loss": 1.1261,
|
76 |
+
"max_memory_allocated (GB)": 91.88,
|
77 |
+
"memory_allocated (GB)": 14.99,
|
78 |
+
"step": 70,
|
79 |
+
"total_memory_available (GB)": 94.62
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.08,
|
83 |
+
"grad_norm": 0.4175470471382141,
|
84 |
+
"learning_rate": 9.908210096889343e-05,
|
85 |
+
"loss": 1.1214,
|
86 |
+
"max_memory_allocated (GB)": 91.88,
|
87 |
+
"memory_allocated (GB)": 14.99,
|
88 |
+
"step": 80,
|
89 |
+
"total_memory_available (GB)": 94.62
|
90 |
+
},
|
91 |
+
{
|
92 |
+
"epoch": 0.09,
|
93 |
+
"grad_norm": 0.4869045317173004,
|
94 |
+
"learning_rate": 9.85721570627231e-05,
|
95 |
+
"loss": 1.1043,
|
96 |
+
"max_memory_allocated (GB)": 91.88,
|
97 |
+
"memory_allocated (GB)": 14.99,
|
98 |
+
"step": 90,
|
99 |
+
"total_memory_available (GB)": 94.62
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.1,
|
103 |
+
"grad_norm": 0.6399329900741577,
|
104 |
+
"learning_rate": 9.806221315655279e-05,
|
105 |
+
"loss": 1.1059,
|
106 |
+
"max_memory_allocated (GB)": 91.88,
|
107 |
+
"memory_allocated (GB)": 14.99,
|
108 |
+
"step": 100,
|
109 |
+
"total_memory_available (GB)": 94.62
|
110 |
+
},
|
111 |
+
{
|
112 |
+
"epoch": 0.11,
|
113 |
+
"grad_norm": 0.5639649033546448,
|
114 |
+
"learning_rate": 9.755226925038246e-05,
|
115 |
+
"loss": 1.0711,
|
116 |
+
"max_memory_allocated (GB)": 91.91,
|
117 |
+
"memory_allocated (GB)": 14.99,
|
118 |
+
"step": 110,
|
119 |
+
"total_memory_available (GB)": 94.62
|
120 |
+
},
|
121 |
+
{
|
122 |
+
"epoch": 0.12,
|
123 |
+
"grad_norm": 0.44946518540382385,
|
124 |
+
"learning_rate": 9.704232534421214e-05,
|
125 |
+
"loss": 1.0644,
|
126 |
+
"max_memory_allocated (GB)": 91.91,
|
127 |
+
"memory_allocated (GB)": 14.99,
|
128 |
+
"step": 120,
|
129 |
+
"total_memory_available (GB)": 94.62
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.13,
|
133 |
+
"grad_norm": 0.5573060512542725,
|
134 |
+
"learning_rate": 9.653238143804181e-05,
|
135 |
+
"loss": 1.0634,
|
136 |
+
"max_memory_allocated (GB)": 91.92,
|
137 |
+
"memory_allocated (GB)": 14.99,
|
138 |
+
"step": 130,
|
139 |
+
"total_memory_available (GB)": 94.62
|
140 |
+
},
|
141 |
+
{
|
142 |
+
"epoch": 0.14,
|
143 |
+
"grad_norm": 0.6105266213417053,
|
144 |
+
"learning_rate": 9.60224375318715e-05,
|
145 |
+
"loss": 1.0597,
|
146 |
+
"max_memory_allocated (GB)": 91.92,
|
147 |
+
"memory_allocated (GB)": 14.99,
|
148 |
+
"step": 140,
|
149 |
+
"total_memory_available (GB)": 94.62
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.15,
|
153 |
+
"grad_norm": 0.6286391615867615,
|
154 |
+
"learning_rate": 9.551249362570118e-05,
|
155 |
+
"loss": 1.0528,
|
156 |
+
"max_memory_allocated (GB)": 91.92,
|
157 |
+
"memory_allocated (GB)": 14.99,
|
158 |
+
"step": 150,
|
159 |
+
"total_memory_available (GB)": 94.62
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 0.16,
|
163 |
+
"grad_norm": 0.8733624815940857,
|
164 |
+
"learning_rate": 9.500254971953085e-05,
|
165 |
+
"loss": 1.0524,
|
166 |
+
"max_memory_allocated (GB)": 91.93,
|
167 |
+
"memory_allocated (GB)": 14.99,
|
168 |
+
"step": 160,
|
169 |
+
"total_memory_available (GB)": 94.62
|
170 |
+
},
|
171 |
+
{
|
172 |
+
"epoch": 0.17,
|
173 |
+
"grad_norm": 0.6268635392189026,
|
174 |
+
"learning_rate": 9.449260581336054e-05,
|
175 |
+
"loss": 1.0345,
|
176 |
+
"max_memory_allocated (GB)": 91.93,
|
177 |
+
"memory_allocated (GB)": 14.99,
|
178 |
+
"step": 170,
|
179 |
+
"total_memory_available (GB)": 94.62
|
180 |
+
},
|
181 |
+
{
|
182 |
+
"epoch": 0.18,
|
183 |
+
"grad_norm": 0.5832647681236267,
|
184 |
+
"learning_rate": 9.398266190719021e-05,
|
185 |
+
"loss": 1.0262,
|
186 |
+
"max_memory_allocated (GB)": 91.93,
|
187 |
+
"memory_allocated (GB)": 14.99,
|
188 |
+
"step": 180,
|
189 |
+
"total_memory_available (GB)": 94.62
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 0.19,
|
193 |
+
"grad_norm": 0.6518144011497498,
|
194 |
+
"learning_rate": 9.347271800101989e-05,
|
195 |
+
"loss": 1.0318,
|
196 |
+
"max_memory_allocated (GB)": 91.93,
|
197 |
+
"memory_allocated (GB)": 14.99,
|
198 |
+
"step": 190,
|
199 |
+
"total_memory_available (GB)": 94.62
|
200 |
+
},
|
201 |
+
{
|
202 |
+
"epoch": 0.2,
|
203 |
+
"grad_norm": 0.49274373054504395,
|
204 |
+
"learning_rate": 9.296277409484956e-05,
|
205 |
+
"loss": 1.0298,
|
206 |
+
"max_memory_allocated (GB)": 91.93,
|
207 |
+
"memory_allocated (GB)": 14.99,
|
208 |
+
"step": 200,
|
209 |
+
"total_memory_available (GB)": 94.62
|
210 |
+
},
|
211 |
+
{
|
212 |
+
"epoch": 0.21,
|
213 |
+
"grad_norm": 0.5237769484519958,
|
214 |
+
"learning_rate": 9.245283018867925e-05,
|
215 |
+
"loss": 1.0176,
|
216 |
+
"max_memory_allocated (GB)": 91.93,
|
217 |
+
"memory_allocated (GB)": 14.99,
|
218 |
+
"step": 210,
|
219 |
+
"total_memory_available (GB)": 94.62
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.22,
|
223 |
+
"grad_norm": 0.564319372177124,
|
224 |
+
"learning_rate": 9.194288628250894e-05,
|
225 |
+
"loss": 1.0172,
|
226 |
+
"max_memory_allocated (GB)": 91.93,
|
227 |
+
"memory_allocated (GB)": 14.99,
|
228 |
+
"step": 220,
|
229 |
+
"total_memory_available (GB)": 94.62
|
230 |
+
},
|
231 |
+
{
|
232 |
+
"epoch": 0.23,
|
233 |
+
"grad_norm": 0.4697343111038208,
|
234 |
+
"learning_rate": 9.14329423763386e-05,
|
235 |
+
"loss": 1.0262,
|
236 |
+
"max_memory_allocated (GB)": 91.93,
|
237 |
+
"memory_allocated (GB)": 14.99,
|
238 |
+
"step": 230,
|
239 |
+
"total_memory_available (GB)": 94.62
|
240 |
+
},
|
241 |
+
{
|
242 |
+
"epoch": 0.24,
|
243 |
+
"grad_norm": 0.5207454562187195,
|
244 |
+
"learning_rate": 9.092299847016829e-05,
|
245 |
+
"loss": 1.024,
|
246 |
+
"max_memory_allocated (GB)": 91.93,
|
247 |
+
"memory_allocated (GB)": 14.99,
|
248 |
+
"step": 240,
|
249 |
+
"total_memory_available (GB)": 94.62
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 0.25,
|
253 |
+
"grad_norm": 0.4637609124183655,
|
254 |
+
"learning_rate": 9.041305456399796e-05,
|
255 |
+
"loss": 1.0069,
|
256 |
+
"max_memory_allocated (GB)": 91.93,
|
257 |
+
"memory_allocated (GB)": 14.99,
|
258 |
+
"step": 250,
|
259 |
+
"total_memory_available (GB)": 94.62
|
260 |
+
},
|
261 |
+
{
|
262 |
+
"epoch": 0.26,
|
263 |
+
"grad_norm": 0.47436627745628357,
|
264 |
+
"learning_rate": 8.990311065782764e-05,
|
265 |
+
"loss": 1.0119,
|
266 |
+
"max_memory_allocated (GB)": 91.93,
|
267 |
+
"memory_allocated (GB)": 14.99,
|
268 |
+
"step": 260,
|
269 |
+
"total_memory_available (GB)": 94.62
|
270 |
+
},
|
271 |
+
{
|
272 |
+
"epoch": 0.27,
|
273 |
+
"grad_norm": 0.5096576809883118,
|
274 |
+
"learning_rate": 8.939316675165733e-05,
|
275 |
+
"loss": 1.0092,
|
276 |
+
"max_memory_allocated (GB)": 91.93,
|
277 |
+
"memory_allocated (GB)": 14.99,
|
278 |
+
"step": 270,
|
279 |
+
"total_memory_available (GB)": 94.62
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 0.28,
|
283 |
+
"grad_norm": 0.5780492424964905,
|
284 |
+
"learning_rate": 8.8883222845487e-05,
|
285 |
+
"loss": 1.0082,
|
286 |
+
"max_memory_allocated (GB)": 91.93,
|
287 |
+
"memory_allocated (GB)": 14.99,
|
288 |
+
"step": 280,
|
289 |
+
"total_memory_available (GB)": 94.62
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 0.29,
|
293 |
+
"grad_norm": 0.4528846740722656,
|
294 |
+
"learning_rate": 8.837327893931669e-05,
|
295 |
+
"loss": 1.0057,
|
296 |
+
"max_memory_allocated (GB)": 91.93,
|
297 |
+
"memory_allocated (GB)": 14.99,
|
298 |
+
"step": 290,
|
299 |
+
"total_memory_available (GB)": 94.62
|
300 |
+
},
|
301 |
+
{
|
302 |
+
"epoch": 0.3,
|
303 |
+
"grad_norm": 0.5259899497032166,
|
304 |
+
"learning_rate": 8.786333503314635e-05,
|
305 |
+
"loss": 0.9989,
|
306 |
+
"max_memory_allocated (GB)": 91.93,
|
307 |
+
"memory_allocated (GB)": 14.99,
|
308 |
+
"step": 300,
|
309 |
+
"total_memory_available (GB)": 94.62
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 0.31,
|
313 |
+
"grad_norm": 0.5007658004760742,
|
314 |
+
"learning_rate": 8.735339112697604e-05,
|
315 |
+
"loss": 0.9997,
|
316 |
+
"max_memory_allocated (GB)": 91.93,
|
317 |
+
"memory_allocated (GB)": 14.99,
|
318 |
+
"step": 310,
|
319 |
+
"total_memory_available (GB)": 94.62
|
320 |
+
},
|
321 |
+
{
|
322 |
+
"epoch": 0.32,
|
323 |
+
"grad_norm": 0.4527484178543091,
|
324 |
+
"learning_rate": 8.684344722080571e-05,
|
325 |
+
"loss": 0.9949,
|
326 |
+
"max_memory_allocated (GB)": 91.93,
|
327 |
+
"memory_allocated (GB)": 14.99,
|
328 |
+
"step": 320,
|
329 |
+
"total_memory_available (GB)": 94.62
|
330 |
+
},
|
331 |
+
{
|
332 |
+
"epoch": 0.33,
|
333 |
+
"grad_norm": 0.4365575611591339,
|
334 |
+
"learning_rate": 8.633350331463539e-05,
|
335 |
+
"loss": 0.9943,
|
336 |
+
"max_memory_allocated (GB)": 91.93,
|
337 |
+
"memory_allocated (GB)": 14.99,
|
338 |
+
"step": 330,
|
339 |
+
"total_memory_available (GB)": 94.62
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 0.34,
|
343 |
+
"grad_norm": 0.49428853392601013,
|
344 |
+
"learning_rate": 8.582355940846507e-05,
|
345 |
+
"loss": 1.0005,
|
346 |
+
"max_memory_allocated (GB)": 91.93,
|
347 |
+
"memory_allocated (GB)": 14.99,
|
348 |
+
"step": 340,
|
349 |
+
"total_memory_available (GB)": 94.62
|
350 |
+
},
|
351 |
+
{
|
352 |
+
"epoch": 0.35,
|
353 |
+
"grad_norm": 0.4611368775367737,
|
354 |
+
"learning_rate": 8.531361550229475e-05,
|
355 |
+
"loss": 0.9972,
|
356 |
+
"max_memory_allocated (GB)": 91.93,
|
357 |
+
"memory_allocated (GB)": 14.99,
|
358 |
+
"step": 350,
|
359 |
+
"total_memory_available (GB)": 94.62
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 0.36,
|
363 |
+
"grad_norm": 0.43548157811164856,
|
364 |
+
"learning_rate": 8.480367159612444e-05,
|
365 |
+
"loss": 0.9833,
|
366 |
+
"max_memory_allocated (GB)": 91.93,
|
367 |
+
"memory_allocated (GB)": 14.99,
|
368 |
+
"step": 360,
|
369 |
+
"total_memory_available (GB)": 94.62
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 0.37,
|
373 |
+
"grad_norm": 0.4797479808330536,
|
374 |
+
"learning_rate": 8.42937276899541e-05,
|
375 |
+
"loss": 0.981,
|
376 |
+
"max_memory_allocated (GB)": 91.97,
|
377 |
+
"memory_allocated (GB)": 14.99,
|
378 |
+
"step": 370,
|
379 |
+
"total_memory_available (GB)": 94.62
|
380 |
+
},
|
381 |
+
{
|
382 |
+
"epoch": 0.38,
|
383 |
+
"grad_norm": 0.44958415627479553,
|
384 |
+
"learning_rate": 8.378378378378379e-05,
|
385 |
+
"loss": 0.9969,
|
386 |
+
"max_memory_allocated (GB)": 91.97,
|
387 |
+
"memory_allocated (GB)": 14.99,
|
388 |
+
"step": 380,
|
389 |
+
"total_memory_available (GB)": 94.62
|
390 |
+
},
|
391 |
+
{
|
392 |
+
"epoch": 0.39,
|
393 |
+
"grad_norm": 0.4499351680278778,
|
394 |
+
"learning_rate": 8.327383987761347e-05,
|
395 |
+
"loss": 0.9847,
|
396 |
+
"max_memory_allocated (GB)": 91.97,
|
397 |
+
"memory_allocated (GB)": 14.99,
|
398 |
+
"step": 390,
|
399 |
+
"total_memory_available (GB)": 94.62
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 0.4,
|
403 |
+
"grad_norm": 0.45021358132362366,
|
404 |
+
"learning_rate": 8.276389597144315e-05,
|
405 |
+
"loss": 0.9874,
|
406 |
+
"max_memory_allocated (GB)": 91.97,
|
407 |
+
"memory_allocated (GB)": 14.99,
|
408 |
+
"step": 400,
|
409 |
+
"total_memory_available (GB)": 94.62
|
410 |
+
},
|
411 |
+
{
|
412 |
+
"epoch": 0.41,
|
413 |
+
"grad_norm": 0.4754478335380554,
|
414 |
+
"learning_rate": 8.225395206527282e-05,
|
415 |
+
"loss": 0.9955,
|
416 |
+
"max_memory_allocated (GB)": 91.97,
|
417 |
+
"memory_allocated (GB)": 14.99,
|
418 |
+
"step": 410,
|
419 |
+
"total_memory_available (GB)": 94.62
|
420 |
+
},
|
421 |
+
{
|
422 |
+
"epoch": 0.42,
|
423 |
+
"grad_norm": 0.44393980503082275,
|
424 |
+
"learning_rate": 8.17440081591025e-05,
|
425 |
+
"loss": 0.9898,
|
426 |
+
"max_memory_allocated (GB)": 91.97,
|
427 |
+
"memory_allocated (GB)": 14.99,
|
428 |
+
"step": 420,
|
429 |
+
"total_memory_available (GB)": 94.62
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 0.43,
|
433 |
+
"grad_norm": 0.43429532647132874,
|
434 |
+
"learning_rate": 8.123406425293219e-05,
|
435 |
+
"loss": 0.9905,
|
436 |
+
"max_memory_allocated (GB)": 91.97,
|
437 |
+
"memory_allocated (GB)": 14.99,
|
438 |
+
"step": 430,
|
439 |
+
"total_memory_available (GB)": 94.62
|
440 |
+
},
|
441 |
+
{
|
442 |
+
"epoch": 0.43,
|
443 |
+
"grad_norm": 0.4695710837841034,
|
444 |
+
"learning_rate": 8.072412034676186e-05,
|
445 |
+
"loss": 0.9702,
|
446 |
+
"max_memory_allocated (GB)": 91.97,
|
447 |
+
"memory_allocated (GB)": 14.99,
|
448 |
+
"step": 440,
|
449 |
+
"total_memory_available (GB)": 94.62
|
450 |
+
},
|
451 |
+
{
|
452 |
+
"epoch": 0.44,
|
453 |
+
"grad_norm": 0.40997833013534546,
|
454 |
+
"learning_rate": 8.021417644059154e-05,
|
455 |
+
"loss": 0.9825,
|
456 |
+
"max_memory_allocated (GB)": 91.97,
|
457 |
+
"memory_allocated (GB)": 14.99,
|
458 |
+
"step": 450,
|
459 |
+
"total_memory_available (GB)": 94.62
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 0.45,
|
463 |
+
"grad_norm": 0.4330343008041382,
|
464 |
+
"learning_rate": 7.970423253442122e-05,
|
465 |
+
"loss": 0.9777,
|
466 |
+
"max_memory_allocated (GB)": 91.97,
|
467 |
+
"memory_allocated (GB)": 14.99,
|
468 |
+
"step": 460,
|
469 |
+
"total_memory_available (GB)": 94.62
|
470 |
+
},
|
471 |
+
{
|
472 |
+
"epoch": 0.46,
|
473 |
+
"grad_norm": 0.42674386501312256,
|
474 |
+
"learning_rate": 7.91942886282509e-05,
|
475 |
+
"loss": 0.9794,
|
476 |
+
"max_memory_allocated (GB)": 91.97,
|
477 |
+
"memory_allocated (GB)": 14.99,
|
478 |
+
"step": 470,
|
479 |
+
"total_memory_available (GB)": 94.62
|
480 |
+
},
|
481 |
+
{
|
482 |
+
"epoch": 0.47,
|
483 |
+
"grad_norm": 0.4461188316345215,
|
484 |
+
"learning_rate": 7.868434472208057e-05,
|
485 |
+
"loss": 0.979,
|
486 |
+
"max_memory_allocated (GB)": 91.97,
|
487 |
+
"memory_allocated (GB)": 14.99,
|
488 |
+
"step": 480,
|
489 |
+
"total_memory_available (GB)": 94.62
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"epoch": 0.48,
|
493 |
+
"grad_norm": 0.4532679617404938,
|
494 |
+
"learning_rate": 7.817440081591025e-05,
|
495 |
+
"loss": 0.9764,
|
496 |
+
"max_memory_allocated (GB)": 91.97,
|
497 |
+
"memory_allocated (GB)": 14.99,
|
498 |
+
"step": 490,
|
499 |
+
"total_memory_available (GB)": 94.62
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"epoch": 0.49,
|
503 |
+
"grad_norm": 0.42160096764564514,
|
504 |
+
"learning_rate": 7.766445690973994e-05,
|
505 |
+
"loss": 0.967,
|
506 |
+
"max_memory_allocated (GB)": 91.97,
|
507 |
+
"memory_allocated (GB)": 14.99,
|
508 |
+
"step": 500,
|
509 |
+
"total_memory_available (GB)": 94.62
|
510 |
+
},
|
511 |
+
{
|
512 |
+
"epoch": 0.5,
|
513 |
+
"grad_norm": 0.45428088307380676,
|
514 |
+
"learning_rate": 7.715451300356961e-05,
|
515 |
+
"loss": 0.975,
|
516 |
+
"max_memory_allocated (GB)": 91.97,
|
517 |
+
"memory_allocated (GB)": 14.99,
|
518 |
+
"step": 510,
|
519 |
+
"total_memory_available (GB)": 94.62
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"epoch": 0.51,
|
523 |
+
"grad_norm": 0.3874836564064026,
|
524 |
+
"learning_rate": 7.664456909739929e-05,
|
525 |
+
"loss": 0.9707,
|
526 |
+
"max_memory_allocated (GB)": 91.97,
|
527 |
+
"memory_allocated (GB)": 14.99,
|
528 |
+
"step": 520,
|
529 |
+
"total_memory_available (GB)": 94.62
|
530 |
+
},
|
531 |
+
{
|
532 |
+
"epoch": 0.52,
|
533 |
+
"grad_norm": 0.4256057143211365,
|
534 |
+
"learning_rate": 7.613462519122897e-05,
|
535 |
+
"loss": 0.9775,
|
536 |
+
"max_memory_allocated (GB)": 91.97,
|
537 |
+
"memory_allocated (GB)": 14.99,
|
538 |
+
"step": 530,
|
539 |
+
"total_memory_available (GB)": 94.62
|
540 |
+
},
|
541 |
+
{
|
542 |
+
"epoch": 0.53,
|
543 |
+
"grad_norm": 0.3986164331436157,
|
544 |
+
"learning_rate": 7.562468128505865e-05,
|
545 |
+
"loss": 0.972,
|
546 |
+
"max_memory_allocated (GB)": 91.97,
|
547 |
+
"memory_allocated (GB)": 14.99,
|
548 |
+
"step": 540,
|
549 |
+
"total_memory_available (GB)": 94.62
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 0.54,
|
553 |
+
"grad_norm": 0.4044497311115265,
|
554 |
+
"learning_rate": 7.511473737888832e-05,
|
555 |
+
"loss": 0.9725,
|
556 |
+
"max_memory_allocated (GB)": 91.97,
|
557 |
+
"memory_allocated (GB)": 14.99,
|
558 |
+
"step": 550,
|
559 |
+
"total_memory_available (GB)": 94.62
|
560 |
+
},
|
561 |
+
{
|
562 |
+
"epoch": 0.55,
|
563 |
+
"grad_norm": 0.439773291349411,
|
564 |
+
"learning_rate": 7.460479347271801e-05,
|
565 |
+
"loss": 0.9667,
|
566 |
+
"max_memory_allocated (GB)": 91.97,
|
567 |
+
"memory_allocated (GB)": 14.99,
|
568 |
+
"step": 560,
|
569 |
+
"total_memory_available (GB)": 94.62
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 0.56,
|
573 |
+
"grad_norm": 0.42315754294395447,
|
574 |
+
"learning_rate": 7.409484956654769e-05,
|
575 |
+
"loss": 0.9714,
|
576 |
+
"max_memory_allocated (GB)": 91.97,
|
577 |
+
"memory_allocated (GB)": 14.99,
|
578 |
+
"step": 570,
|
579 |
+
"total_memory_available (GB)": 94.62
|
580 |
+
},
|
581 |
+
{
|
582 |
+
"epoch": 0.57,
|
583 |
+
"grad_norm": 0.38059332966804504,
|
584 |
+
"learning_rate": 7.358490566037736e-05,
|
585 |
+
"loss": 0.979,
|
586 |
+
"max_memory_allocated (GB)": 91.97,
|
587 |
+
"memory_allocated (GB)": 14.99,
|
588 |
+
"step": 580,
|
589 |
+
"total_memory_available (GB)": 94.62
|
590 |
+
},
|
591 |
+
{
|
592 |
+
"epoch": 0.58,
|
593 |
+
"grad_norm": 0.4393787086009979,
|
594 |
+
"learning_rate": 7.307496175420703e-05,
|
595 |
+
"loss": 0.9663,
|
596 |
+
"max_memory_allocated (GB)": 91.97,
|
597 |
+
"memory_allocated (GB)": 14.99,
|
598 |
+
"step": 590,
|
599 |
+
"total_memory_available (GB)": 94.62
|
600 |
+
},
|
601 |
+
{
|
602 |
+
"epoch": 0.59,
|
603 |
+
"grad_norm": 0.4336337447166443,
|
604 |
+
"learning_rate": 7.256501784803672e-05,
|
605 |
+
"loss": 0.9661,
|
606 |
+
"max_memory_allocated (GB)": 91.97,
|
607 |
+
"memory_allocated (GB)": 14.99,
|
608 |
+
"step": 600,
|
609 |
+
"total_memory_available (GB)": 94.62
|
610 |
+
},
|
611 |
+
{
|
612 |
+
"epoch": 0.6,
|
613 |
+
"grad_norm": 0.41273126006126404,
|
614 |
+
"learning_rate": 7.20550739418664e-05,
|
615 |
+
"loss": 0.9672,
|
616 |
+
"max_memory_allocated (GB)": 91.97,
|
617 |
+
"memory_allocated (GB)": 14.99,
|
618 |
+
"step": 610,
|
619 |
+
"total_memory_available (GB)": 94.62
|
620 |
+
},
|
621 |
+
{
|
622 |
+
"epoch": 0.61,
|
623 |
+
"grad_norm": 0.45420095324516296,
|
624 |
+
"learning_rate": 7.154513003569607e-05,
|
625 |
+
"loss": 0.9668,
|
626 |
+
"max_memory_allocated (GB)": 91.97,
|
627 |
+
"memory_allocated (GB)": 14.99,
|
628 |
+
"step": 620,
|
629 |
+
"total_memory_available (GB)": 94.62
|
630 |
+
},
|
631 |
+
{
|
632 |
+
"epoch": 0.62,
|
633 |
+
"grad_norm": 0.4193101227283478,
|
634 |
+
"learning_rate": 7.103518612952576e-05,
|
635 |
+
"loss": 0.9684,
|
636 |
+
"max_memory_allocated (GB)": 91.97,
|
637 |
+
"memory_allocated (GB)": 14.99,
|
638 |
+
"step": 630,
|
639 |
+
"total_memory_available (GB)": 94.62
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 0.63,
|
643 |
+
"grad_norm": 0.4247801601886749,
|
644 |
+
"learning_rate": 7.052524222335543e-05,
|
645 |
+
"loss": 0.9652,
|
646 |
+
"max_memory_allocated (GB)": 91.97,
|
647 |
+
"memory_allocated (GB)": 14.99,
|
648 |
+
"step": 640,
|
649 |
+
"total_memory_available (GB)": 94.62
|
650 |
+
},
|
651 |
+
{
|
652 |
+
"epoch": 0.64,
|
653 |
+
"grad_norm": 0.5118327140808105,
|
654 |
+
"learning_rate": 7.001529831718512e-05,
|
655 |
+
"loss": 0.9777,
|
656 |
+
"max_memory_allocated (GB)": 91.97,
|
657 |
+
"memory_allocated (GB)": 14.99,
|
658 |
+
"step": 650,
|
659 |
+
"total_memory_available (GB)": 94.62
|
660 |
+
},
|
661 |
+
{
|
662 |
+
"epoch": 0.65,
|
663 |
+
"grad_norm": 0.42659929394721985,
|
664 |
+
"learning_rate": 6.950535441101478e-05,
|
665 |
+
"loss": 0.9624,
|
666 |
+
"max_memory_allocated (GB)": 91.97,
|
667 |
+
"memory_allocated (GB)": 14.99,
|
668 |
+
"step": 660,
|
669 |
+
"total_memory_available (GB)": 94.62
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"epoch": 0.66,
|
673 |
+
"grad_norm": 0.45405977964401245,
|
674 |
+
"learning_rate": 6.899541050484447e-05,
|
675 |
+
"loss": 0.9585,
|
676 |
+
"max_memory_allocated (GB)": 91.97,
|
677 |
+
"memory_allocated (GB)": 14.99,
|
678 |
+
"step": 670,
|
679 |
+
"total_memory_available (GB)": 94.62
|
680 |
+
},
|
681 |
+
{
|
682 |
+
"epoch": 0.67,
|
683 |
+
"grad_norm": 0.40387892723083496,
|
684 |
+
"learning_rate": 6.848546659867415e-05,
|
685 |
+
"loss": 0.9633,
|
686 |
+
"max_memory_allocated (GB)": 91.97,
|
687 |
+
"memory_allocated (GB)": 14.99,
|
688 |
+
"step": 680,
|
689 |
+
"total_memory_available (GB)": 94.62
|
690 |
+
},
|
691 |
+
{
|
692 |
+
"epoch": 0.68,
|
693 |
+
"grad_norm": 0.39345934987068176,
|
694 |
+
"learning_rate": 6.797552269250382e-05,
|
695 |
+
"loss": 0.9788,
|
696 |
+
"max_memory_allocated (GB)": 91.97,
|
697 |
+
"memory_allocated (GB)": 14.99,
|
698 |
+
"step": 690,
|
699 |
+
"total_memory_available (GB)": 94.62
|
700 |
+
},
|
701 |
+
{
|
702 |
+
"epoch": 0.69,
|
703 |
+
"grad_norm": 0.4187304675579071,
|
704 |
+
"learning_rate": 6.746557878633351e-05,
|
705 |
+
"loss": 0.9651,
|
706 |
+
"max_memory_allocated (GB)": 91.97,
|
707 |
+
"memory_allocated (GB)": 14.99,
|
708 |
+
"step": 700,
|
709 |
+
"total_memory_available (GB)": 94.62
|
710 |
+
},
|
711 |
+
{
|
712 |
+
"epoch": 0.7,
|
713 |
+
"grad_norm": 0.4518466293811798,
|
714 |
+
"learning_rate": 6.695563488016318e-05,
|
715 |
+
"loss": 0.965,
|
716 |
+
"max_memory_allocated (GB)": 91.97,
|
717 |
+
"memory_allocated (GB)": 14.99,
|
718 |
+
"step": 710,
|
719 |
+
"total_memory_available (GB)": 94.62
|
720 |
+
},
|
721 |
+
{
|
722 |
+
"epoch": 0.71,
|
723 |
+
"grad_norm": 0.4474211037158966,
|
724 |
+
"learning_rate": 6.644569097399287e-05,
|
725 |
+
"loss": 0.9714,
|
726 |
+
"max_memory_allocated (GB)": 91.97,
|
727 |
+
"memory_allocated (GB)": 14.99,
|
728 |
+
"step": 720,
|
729 |
+
"total_memory_available (GB)": 94.62
|
730 |
+
},
|
731 |
+
{
|
732 |
+
"epoch": 0.72,
|
733 |
+
"grad_norm": 0.38997548818588257,
|
734 |
+
"learning_rate": 6.593574706782255e-05,
|
735 |
+
"loss": 0.9528,
|
736 |
+
"max_memory_allocated (GB)": 91.97,
|
737 |
+
"memory_allocated (GB)": 14.99,
|
738 |
+
"step": 730,
|
739 |
+
"total_memory_available (GB)": 94.62
|
740 |
+
},
|
741 |
+
{
|
742 |
+
"epoch": 0.73,
|
743 |
+
"grad_norm": 0.42444851994514465,
|
744 |
+
"learning_rate": 6.542580316165222e-05,
|
745 |
+
"loss": 0.9638,
|
746 |
+
"max_memory_allocated (GB)": 91.97,
|
747 |
+
"memory_allocated (GB)": 14.99,
|
748 |
+
"step": 740,
|
749 |
+
"total_memory_available (GB)": 94.62
|
750 |
+
},
|
751 |
+
{
|
752 |
+
"epoch": 0.74,
|
753 |
+
"grad_norm": 0.4098523259162903,
|
754 |
+
"learning_rate": 6.491585925548191e-05,
|
755 |
+
"loss": 0.9534,
|
756 |
+
"max_memory_allocated (GB)": 91.97,
|
757 |
+
"memory_allocated (GB)": 14.99,
|
758 |
+
"step": 750,
|
759 |
+
"total_memory_available (GB)": 94.62
|
760 |
+
},
|
761 |
+
{
|
762 |
+
"epoch": 0.75,
|
763 |
+
"grad_norm": 0.42875897884368896,
|
764 |
+
"learning_rate": 6.440591534931157e-05,
|
765 |
+
"loss": 0.9631,
|
766 |
+
"max_memory_allocated (GB)": 91.97,
|
767 |
+
"memory_allocated (GB)": 14.99,
|
768 |
+
"step": 760,
|
769 |
+
"total_memory_available (GB)": 94.62
|
770 |
+
},
|
771 |
+
{
|
772 |
+
"epoch": 0.76,
|
773 |
+
"grad_norm": 0.4514971077442169,
|
774 |
+
"learning_rate": 6.389597144314126e-05,
|
775 |
+
"loss": 0.9623,
|
776 |
+
"max_memory_allocated (GB)": 91.97,
|
777 |
+
"memory_allocated (GB)": 14.99,
|
778 |
+
"step": 770,
|
779 |
+
"total_memory_available (GB)": 94.62
|
780 |
+
},
|
781 |
+
{
|
782 |
+
"epoch": 0.77,
|
783 |
+
"grad_norm": 0.43437400460243225,
|
784 |
+
"learning_rate": 6.338602753697093e-05,
|
785 |
+
"loss": 0.9657,
|
786 |
+
"max_memory_allocated (GB)": 91.97,
|
787 |
+
"memory_allocated (GB)": 14.99,
|
788 |
+
"step": 780,
|
789 |
+
"total_memory_available (GB)": 94.62
|
790 |
+
},
|
791 |
+
{
|
792 |
+
"epoch": 0.78,
|
793 |
+
"grad_norm": 0.40089166164398193,
|
794 |
+
"learning_rate": 6.287608363080062e-05,
|
795 |
+
"loss": 0.9607,
|
796 |
+
"max_memory_allocated (GB)": 91.97,
|
797 |
+
"memory_allocated (GB)": 14.99,
|
798 |
+
"step": 790,
|
799 |
+
"total_memory_available (GB)": 94.62
|
800 |
+
},
|
801 |
+
{
|
802 |
+
"epoch": 0.79,
|
803 |
+
"grad_norm": 0.3970320224761963,
|
804 |
+
"learning_rate": 6.23661397246303e-05,
|
805 |
+
"loss": 0.9623,
|
806 |
+
"max_memory_allocated (GB)": 91.97,
|
807 |
+
"memory_allocated (GB)": 14.99,
|
808 |
+
"step": 800,
|
809 |
+
"total_memory_available (GB)": 94.62
|
810 |
+
},
|
811 |
+
{
|
812 |
+
"epoch": 0.8,
|
813 |
+
"grad_norm": 0.5439819693565369,
|
814 |
+
"learning_rate": 6.185619581845997e-05,
|
815 |
+
"loss": 0.9585,
|
816 |
+
"max_memory_allocated (GB)": 91.97,
|
817 |
+
"memory_allocated (GB)": 14.99,
|
818 |
+
"step": 810,
|
819 |
+
"total_memory_available (GB)": 94.62
|
820 |
+
},
|
821 |
+
{
|
822 |
+
"epoch": 0.81,
|
823 |
+
"grad_norm": 0.37487202882766724,
|
824 |
+
"learning_rate": 6.134625191228966e-05,
|
825 |
+
"loss": 0.9509,
|
826 |
+
"max_memory_allocated (GB)": 91.97,
|
827 |
+
"memory_allocated (GB)": 14.99,
|
828 |
+
"step": 820,
|
829 |
+
"total_memory_available (GB)": 94.62
|
830 |
+
},
|
831 |
+
{
|
832 |
+
"epoch": 0.82,
|
833 |
+
"grad_norm": 0.42697498202323914,
|
834 |
+
"learning_rate": 6.0836308006119326e-05,
|
835 |
+
"loss": 0.9525,
|
836 |
+
"max_memory_allocated (GB)": 91.97,
|
837 |
+
"memory_allocated (GB)": 14.99,
|
838 |
+
"step": 830,
|
839 |
+
"total_memory_available (GB)": 94.62
|
840 |
+
},
|
841 |
+
{
|
842 |
+
"epoch": 0.83,
|
843 |
+
"grad_norm": 0.38735342025756836,
|
844 |
+
"learning_rate": 6.032636409994901e-05,
|
845 |
+
"loss": 0.954,
|
846 |
+
"max_memory_allocated (GB)": 91.97,
|
847 |
+
"memory_allocated (GB)": 14.99,
|
848 |
+
"step": 840,
|
849 |
+
"total_memory_available (GB)": 94.62
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 0.84,
|
853 |
+
"grad_norm": 0.4077759087085724,
|
854 |
+
"learning_rate": 5.981642019377869e-05,
|
855 |
+
"loss": 0.9528,
|
856 |
+
"max_memory_allocated (GB)": 91.97,
|
857 |
+
"memory_allocated (GB)": 14.99,
|
858 |
+
"step": 850,
|
859 |
+
"total_memory_available (GB)": 94.62
|
860 |
+
},
|
861 |
+
{
|
862 |
+
"epoch": 0.85,
|
863 |
+
"grad_norm": 0.38065391778945923,
|
864 |
+
"learning_rate": 5.930647628760837e-05,
|
865 |
+
"loss": 0.9589,
|
866 |
+
"max_memory_allocated (GB)": 91.97,
|
867 |
+
"memory_allocated (GB)": 14.99,
|
868 |
+
"step": 860,
|
869 |
+
"total_memory_available (GB)": 94.62
|
870 |
+
},
|
871 |
+
{
|
872 |
+
"epoch": 0.86,
|
873 |
+
"grad_norm": 0.3892410695552826,
|
874 |
+
"learning_rate": 5.879653238143804e-05,
|
875 |
+
"loss": 0.9538,
|
876 |
+
"max_memory_allocated (GB)": 91.97,
|
877 |
+
"memory_allocated (GB)": 14.99,
|
878 |
+
"step": 870,
|
879 |
+
"total_memory_available (GB)": 94.62
|
880 |
+
},
|
881 |
+
{
|
882 |
+
"epoch": 0.87,
|
883 |
+
"grad_norm": 0.3951966166496277,
|
884 |
+
"learning_rate": 5.8286588475267726e-05,
|
885 |
+
"loss": 0.9518,
|
886 |
+
"max_memory_allocated (GB)": 91.97,
|
887 |
+
"memory_allocated (GB)": 14.99,
|
888 |
+
"step": 880,
|
889 |
+
"total_memory_available (GB)": 94.62
|
890 |
+
},
|
891 |
+
{
|
892 |
+
"epoch": 0.88,
|
893 |
+
"grad_norm": 0.5943160057067871,
|
894 |
+
"learning_rate": 5.777664456909741e-05,
|
895 |
+
"loss": 0.9437,
|
896 |
+
"max_memory_allocated (GB)": 91.97,
|
897 |
+
"memory_allocated (GB)": 14.99,
|
898 |
+
"step": 890,
|
899 |
+
"total_memory_available (GB)": 94.62
|
900 |
+
},
|
901 |
+
{
|
902 |
+
"epoch": 0.89,
|
903 |
+
"grad_norm": 0.440020889043808,
|
904 |
+
"learning_rate": 5.7266700662927075e-05,
|
905 |
+
"loss": 0.9635,
|
906 |
+
"max_memory_allocated (GB)": 91.97,
|
907 |
+
"memory_allocated (GB)": 14.99,
|
908 |
+
"step": 900,
|
909 |
+
"total_memory_available (GB)": 94.62
|
910 |
+
},
|
911 |
+
{
|
912 |
+
"epoch": 0.9,
|
913 |
+
"grad_norm": 0.44286438822746277,
|
914 |
+
"learning_rate": 5.6756756756756757e-05,
|
915 |
+
"loss": 0.9511,
|
916 |
+
"max_memory_allocated (GB)": 91.97,
|
917 |
+
"memory_allocated (GB)": 14.99,
|
918 |
+
"step": 910,
|
919 |
+
"total_memory_available (GB)": 94.62
|
920 |
+
},
|
921 |
+
{
|
922 |
+
"epoch": 0.91,
|
923 |
+
"grad_norm": 0.4247153699398041,
|
924 |
+
"learning_rate": 5.624681285058644e-05,
|
925 |
+
"loss": 0.9475,
|
926 |
+
"max_memory_allocated (GB)": 91.97,
|
927 |
+
"memory_allocated (GB)": 14.99,
|
928 |
+
"step": 920,
|
929 |
+
"total_memory_available (GB)": 94.62
|
930 |
+
},
|
931 |
+
{
|
932 |
+
"epoch": 0.92,
|
933 |
+
"grad_norm": 0.42017248272895813,
|
934 |
+
"learning_rate": 5.573686894441612e-05,
|
935 |
+
"loss": 0.9436,
|
936 |
+
"max_memory_allocated (GB)": 91.97,
|
937 |
+
"memory_allocated (GB)": 14.99,
|
938 |
+
"step": 930,
|
939 |
+
"total_memory_available (GB)": 94.62
|
940 |
+
},
|
941 |
+
{
|
942 |
+
"epoch": 0.93,
|
943 |
+
"grad_norm": 0.4182833731174469,
|
944 |
+
"learning_rate": 5.5226925038245794e-05,
|
945 |
+
"loss": 0.9557,
|
946 |
+
"max_memory_allocated (GB)": 91.97,
|
947 |
+
"memory_allocated (GB)": 14.99,
|
948 |
+
"step": 940,
|
949 |
+
"total_memory_available (GB)": 94.62
|
950 |
+
},
|
951 |
+
{
|
952 |
+
"epoch": 0.94,
|
953 |
+
"grad_norm": 0.41079315543174744,
|
954 |
+
"learning_rate": 5.4716981132075475e-05,
|
955 |
+
"loss": 0.9585,
|
956 |
+
"max_memory_allocated (GB)": 91.97,
|
957 |
+
"memory_allocated (GB)": 14.99,
|
958 |
+
"step": 950,
|
959 |
+
"total_memory_available (GB)": 94.62
|
960 |
+
},
|
961 |
+
{
|
962 |
+
"epoch": 0.95,
|
963 |
+
"grad_norm": 0.3954004943370819,
|
964 |
+
"learning_rate": 5.4207037225905157e-05,
|
965 |
+
"loss": 0.9478,
|
966 |
+
"max_memory_allocated (GB)": 91.97,
|
967 |
+
"memory_allocated (GB)": 14.99,
|
968 |
+
"step": 960,
|
969 |
+
"total_memory_available (GB)": 94.62
|
970 |
+
},
|
971 |
+
{
|
972 |
+
"epoch": 0.96,
|
973 |
+
"grad_norm": 0.39996138215065,
|
974 |
+
"learning_rate": 5.369709331973484e-05,
|
975 |
+
"loss": 0.947,
|
976 |
+
"max_memory_allocated (GB)": 91.97,
|
977 |
+
"memory_allocated (GB)": 14.99,
|
978 |
+
"step": 970,
|
979 |
+
"total_memory_available (GB)": 94.62
|
980 |
+
},
|
981 |
+
{
|
982 |
+
"epoch": 0.97,
|
983 |
+
"grad_norm": 0.39325571060180664,
|
984 |
+
"learning_rate": 5.3187149413564506e-05,
|
985 |
+
"loss": 0.9473,
|
986 |
+
"max_memory_allocated (GB)": 91.97,
|
987 |
+
"memory_allocated (GB)": 14.99,
|
988 |
+
"step": 980,
|
989 |
+
"total_memory_available (GB)": 94.62
|
990 |
+
},
|
991 |
+
{
|
992 |
+
"epoch": 0.98,
|
993 |
+
"grad_norm": 0.43744412064552307,
|
994 |
+
"learning_rate": 5.267720550739419e-05,
|
995 |
+
"loss": 0.9437,
|
996 |
+
"max_memory_allocated (GB)": 91.97,
|
997 |
+
"memory_allocated (GB)": 14.99,
|
998 |
+
"step": 990,
|
999 |
+
"total_memory_available (GB)": 94.62
|
1000 |
+
},
|
1001 |
+
{
|
1002 |
+
"epoch": 0.99,
|
1003 |
+
"grad_norm": 0.36840781569480896,
|
1004 |
+
"learning_rate": 5.216726160122387e-05,
|
1005 |
+
"loss": 0.9441,
|
1006 |
+
"max_memory_allocated (GB)": 91.97,
|
1007 |
+
"memory_allocated (GB)": 14.99,
|
1008 |
+
"step": 1000,
|
1009 |
+
"total_memory_available (GB)": 94.62
|
1010 |
+
}
|
1011 |
+
],
|
1012 |
+
"logging_steps": 10,
|
1013 |
+
"max_steps": 2022,
|
1014 |
+
"num_input_tokens_seen": 0,
|
1015 |
+
"num_train_epochs": 2,
|
1016 |
+
"save_steps": 500,
|
1017 |
+
"total_flos": 1.119482194910249e+19,
|
1018 |
+
"train_batch_size": 8,
|
1019 |
+
"trial_name": null,
|
1020 |
+
"trial_params": null
|
1021 |
+
}
|
checkpoint-1000/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dd4c180c2753de2a707d546fc3073ec95a26b4c16fb44ff8754e797399512c42
|
3 |
+
size 5880
|
checkpoint-1000/zero_to_fp32.py
ADDED
@@ -0,0 +1,592 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
215 |
+
elif zero_stage == 3:
|
216 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
217 |
+
|
218 |
+
|
219 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
220 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
221 |
+
return
|
222 |
+
|
223 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
224 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
225 |
+
|
226 |
+
if debug:
|
227 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
229 |
+
|
230 |
+
wanted_params = len(frozen_param_shapes)
|
231 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
232 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
233 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
234 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
235 |
+
|
236 |
+
total_params = 0
|
237 |
+
total_numel = 0
|
238 |
+
for name, shape in frozen_param_shapes.items():
|
239 |
+
total_params += 1
|
240 |
+
unpartitioned_numel = shape.numel()
|
241 |
+
total_numel += unpartitioned_numel
|
242 |
+
|
243 |
+
state_dict[name] = frozen_param_fragments[name]
|
244 |
+
|
245 |
+
if debug:
|
246 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
247 |
+
|
248 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
249 |
+
|
250 |
+
|
251 |
+
def _has_callable(obj, fn):
|
252 |
+
attr = getattr(obj, fn, None)
|
253 |
+
return callable(attr)
|
254 |
+
|
255 |
+
|
256 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
257 |
+
param_shapes = zero_model_states[0].param_shapes
|
258 |
+
|
259 |
+
# Reconstruction protocol:
|
260 |
+
#
|
261 |
+
# XXX: document this
|
262 |
+
|
263 |
+
if debug:
|
264 |
+
for i in range(world_size):
|
265 |
+
for j in range(len(fp32_flat_groups[0])):
|
266 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
267 |
+
|
268 |
+
# XXX: memory usage doubles here (zero2)
|
269 |
+
num_param_groups = len(fp32_flat_groups[0])
|
270 |
+
merged_single_partition_of_fp32_groups = []
|
271 |
+
for i in range(num_param_groups):
|
272 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
273 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
274 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
275 |
+
avail_numel = sum(
|
276 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
277 |
+
|
278 |
+
if debug:
|
279 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
280 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
281 |
+
# not asserting if there is a mismatch due to possible padding
|
282 |
+
print(f"Have {avail_numel} numels to process.")
|
283 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
284 |
+
|
285 |
+
# params
|
286 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
287 |
+
# out-of-core computing solution
|
288 |
+
total_numel = 0
|
289 |
+
total_params = 0
|
290 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
291 |
+
offset = 0
|
292 |
+
avail_numel = full_single_fp32_vector.numel()
|
293 |
+
for name, shape in shapes.items():
|
294 |
+
|
295 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
296 |
+
total_numel += unpartitioned_numel
|
297 |
+
total_params += 1
|
298 |
+
|
299 |
+
if debug:
|
300 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
301 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
302 |
+
offset += unpartitioned_numel
|
303 |
+
|
304 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
305 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
306 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
307 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
308 |
+
align_to = 2 * world_size
|
309 |
+
|
310 |
+
def zero2_align(x):
|
311 |
+
return align_to * math.ceil(x / align_to)
|
312 |
+
|
313 |
+
if debug:
|
314 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
315 |
+
|
316 |
+
offset = zero2_align(offset)
|
317 |
+
avail_numel = zero2_align(avail_numel)
|
318 |
+
|
319 |
+
if debug:
|
320 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
321 |
+
|
322 |
+
# Sanity check
|
323 |
+
if offset != avail_numel:
|
324 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
325 |
+
|
326 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
327 |
+
|
328 |
+
|
329 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
330 |
+
state_dict = OrderedDict()
|
331 |
+
|
332 |
+
# buffers
|
333 |
+
buffers = zero_model_states[0].buffers
|
334 |
+
state_dict.update(buffers)
|
335 |
+
if debug:
|
336 |
+
print(f"added {len(buffers)} buffers")
|
337 |
+
|
338 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
339 |
+
|
340 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
341 |
+
|
342 |
+
# recover shared parameters
|
343 |
+
for pair in zero_model_states[0].shared_params:
|
344 |
+
if pair[1] in state_dict:
|
345 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
346 |
+
|
347 |
+
return state_dict
|
348 |
+
|
349 |
+
|
350 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
351 |
+
remainder = unpartitioned_numel % world_size
|
352 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
353 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
354 |
+
return partitioned_numel, padding_numel
|
355 |
+
|
356 |
+
|
357 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
358 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
359 |
+
return
|
360 |
+
|
361 |
+
if debug:
|
362 |
+
for i in range(world_size):
|
363 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
364 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
365 |
+
|
366 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
367 |
+
wanted_params = len(frozen_param_shapes)
|
368 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
369 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
370 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
371 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
372 |
+
|
373 |
+
total_params = 0
|
374 |
+
total_numel = 0
|
375 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
376 |
+
total_params += 1
|
377 |
+
unpartitioned_numel = shape.numel()
|
378 |
+
total_numel += unpartitioned_numel
|
379 |
+
|
380 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
381 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
382 |
+
|
383 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
384 |
+
|
385 |
+
if debug:
|
386 |
+
print(
|
387 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
388 |
+
)
|
389 |
+
|
390 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
391 |
+
|
392 |
+
|
393 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
394 |
+
param_shapes = zero_model_states[0].param_shapes
|
395 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
396 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
397 |
+
# param, re-consolidating each param, while dealing with padding if any
|
398 |
+
|
399 |
+
# merge list of dicts, preserving order
|
400 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
401 |
+
|
402 |
+
if debug:
|
403 |
+
for i in range(world_size):
|
404 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
405 |
+
|
406 |
+
wanted_params = len(param_shapes)
|
407 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
408 |
+
# not asserting if there is a mismatch due to possible padding
|
409 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
410 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
411 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
412 |
+
|
413 |
+
# params
|
414 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
415 |
+
# out-of-core computing solution
|
416 |
+
offset = 0
|
417 |
+
total_numel = 0
|
418 |
+
total_params = 0
|
419 |
+
for name, shape in param_shapes.items():
|
420 |
+
|
421 |
+
unpartitioned_numel = shape.numel()
|
422 |
+
total_numel += unpartitioned_numel
|
423 |
+
total_params += 1
|
424 |
+
|
425 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
426 |
+
|
427 |
+
if debug:
|
428 |
+
print(
|
429 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
430 |
+
)
|
431 |
+
|
432 |
+
# XXX: memory usage doubles here
|
433 |
+
state_dict[name] = torch.cat(
|
434 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
435 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
436 |
+
offset += partitioned_numel
|
437 |
+
|
438 |
+
offset *= world_size
|
439 |
+
|
440 |
+
# Sanity check
|
441 |
+
if offset != avail_numel:
|
442 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
443 |
+
|
444 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
445 |
+
|
446 |
+
|
447 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
448 |
+
state_dict = OrderedDict()
|
449 |
+
|
450 |
+
# buffers
|
451 |
+
buffers = zero_model_states[0].buffers
|
452 |
+
state_dict.update(buffers)
|
453 |
+
if debug:
|
454 |
+
print(f"added {len(buffers)} buffers")
|
455 |
+
|
456 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
457 |
+
|
458 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
459 |
+
|
460 |
+
# recover shared parameters
|
461 |
+
for pair in zero_model_states[0].shared_params:
|
462 |
+
if pair[1] in state_dict:
|
463 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
464 |
+
|
465 |
+
return state_dict
|
466 |
+
|
467 |
+
|
468 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
469 |
+
"""
|
470 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
471 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
472 |
+
via a model hub.
|
473 |
+
|
474 |
+
Args:
|
475 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
476 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
477 |
+
|
478 |
+
Returns:
|
479 |
+
- pytorch ``state_dict``
|
480 |
+
|
481 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
482 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
483 |
+
the checkpoint.
|
484 |
+
|
485 |
+
A typical usage might be ::
|
486 |
+
|
487 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
488 |
+
# do the training and checkpoint saving
|
489 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
490 |
+
model = model.cpu() # move to cpu
|
491 |
+
model.load_state_dict(state_dict)
|
492 |
+
# submit to model hub or save the model to share with others
|
493 |
+
|
494 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
495 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
496 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
497 |
+
|
498 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
499 |
+
|
500 |
+
"""
|
501 |
+
if tag is None:
|
502 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
503 |
+
if os.path.isfile(latest_path):
|
504 |
+
with open(latest_path, 'r') as fd:
|
505 |
+
tag = fd.read().strip()
|
506 |
+
else:
|
507 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
508 |
+
|
509 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
510 |
+
|
511 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
512 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
513 |
+
|
514 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
515 |
+
|
516 |
+
|
517 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
518 |
+
"""
|
519 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
520 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
521 |
+
|
522 |
+
Args:
|
523 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
524 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
525 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
526 |
+
"""
|
527 |
+
|
528 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
529 |
+
print(f"Saving fp32 state dict to {output_file}")
|
530 |
+
torch.save(state_dict, output_file)
|
531 |
+
|
532 |
+
|
533 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
534 |
+
"""
|
535 |
+
1. Put the provided model to cpu
|
536 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
537 |
+
3. Load it into the provided model
|
538 |
+
|
539 |
+
Args:
|
540 |
+
- ``model``: the model object to update
|
541 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
542 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
543 |
+
|
544 |
+
Returns:
|
545 |
+
- ``model`: modified model
|
546 |
+
|
547 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
548 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
549 |
+
conveniently placed for you in the checkpoint folder.
|
550 |
+
|
551 |
+
A typical usage might be ::
|
552 |
+
|
553 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
554 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
555 |
+
# submit to model hub or save the model to share with others
|
556 |
+
|
557 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
558 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
559 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
560 |
+
|
561 |
+
"""
|
562 |
+
logger.info(f"Extracting fp32 weights")
|
563 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
564 |
+
|
565 |
+
logger.info(f"Overwriting model with fp32 weights")
|
566 |
+
model = model.cpu()
|
567 |
+
model.load_state_dict(state_dict, strict=False)
|
568 |
+
|
569 |
+
return model
|
570 |
+
|
571 |
+
|
572 |
+
if __name__ == "__main__":
|
573 |
+
|
574 |
+
parser = argparse.ArgumentParser()
|
575 |
+
parser.add_argument("checkpoint_dir",
|
576 |
+
type=str,
|
577 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
578 |
+
parser.add_argument(
|
579 |
+
"output_file",
|
580 |
+
type=str,
|
581 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
582 |
+
parser.add_argument("-t",
|
583 |
+
"--tag",
|
584 |
+
type=str,
|
585 |
+
default=None,
|
586 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
587 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
588 |
+
args = parser.parse_args()
|
589 |
+
|
590 |
+
debug = args.debug
|
591 |
+
|
592 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
|
checkpoint-1500/README.md
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
---
|
4 |
+
## Training procedure
|
5 |
+
|
6 |
+
### Framework versions
|
7 |
+
|
8 |
+
|
9 |
+
- PEFT 0.4.0
|
checkpoint-1500/adapter_config.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"auto_mapping": null,
|
3 |
+
"base_model_name_or_path": "mistralai/Mistral-7B-v0.1",
|
4 |
+
"bias": "none",
|
5 |
+
"fan_in_fan_out": false,
|
6 |
+
"inference_mode": true,
|
7 |
+
"init_lora_weights": true,
|
8 |
+
"layers_pattern": null,
|
9 |
+
"layers_to_transform": null,
|
10 |
+
"lora_alpha": 32,
|
11 |
+
"lora_dropout": 0.1,
|
12 |
+
"modules_to_save": null,
|
13 |
+
"peft_type": "LORA",
|
14 |
+
"r": 8,
|
15 |
+
"revision": null,
|
16 |
+
"target_modules": [
|
17 |
+
"q_proj",
|
18 |
+
"k_proj",
|
19 |
+
"v_proj",
|
20 |
+
"o_proj"
|
21 |
+
],
|
22 |
+
"task_type": "CAUSAL_LM"
|
23 |
+
}
|
checkpoint-1500/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9c2defbc903959f785a495b675953d393017047fe3cc7132eba2c9fc30a5f1c2
|
3 |
+
size 13665592
|
checkpoint-1500/gaudi_config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"autocast_bf16_ops": null,
|
3 |
+
"autocast_fp32_ops": null,
|
4 |
+
"optimum_version": "1.20.0",
|
5 |
+
"transformers_version": "4.38.2",
|
6 |
+
"use_dynamic_shapes": false,
|
7 |
+
"use_fused_adam": true,
|
8 |
+
"use_fused_clip_norm": true,
|
9 |
+
"use_torch_autocast": false
|
10 |
+
}
|
checkpoint-1500/global_step1500/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a20ce447e78509e7b75fdd74cb94032f49d6c3ecff2abfa4c18cb3937ba24b35
|
3 |
+
size 10229904
|
checkpoint-1500/global_step1500/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a411f914f868edc6b297b568c88adfa2e57638006d153cb484e42650d958d8a0
|
3 |
+
size 10229904
|
checkpoint-1500/global_step1500/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:305e24a00c2fda56c4853782833ae5575ffc0fae6665a631acaf389baf81299c
|
3 |
+
size 10229968
|
checkpoint-1500/global_step1500/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:00c5e6f48f0575e61eb7f8cf2841f4766dd42f7885670191f32ddce054dbe624
|
3 |
+
size 10229968
|
checkpoint-1500/global_step1500/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:936e784a83beeb00a8cdf3c008015494fc7365ad574f216f4628a3a61086c25c
|
3 |
+
size 10229968
|
checkpoint-1500/global_step1500/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7677a1263aff0851c5544d4942d49198b6786735c02a1a4fbc8ae984b3ac679b
|
3 |
+
size 10229968
|
checkpoint-1500/global_step1500/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f8b8e21fdeebee5aead1e257a20fe9de80d3ba24541836696496b2c3087cad5d
|
3 |
+
size 10229968
|
checkpoint-1500/global_step1500/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3a33c3d990ed1d8e6fb4fea9aff23309dd70d4e5e16dda37fad7d0e4e01e6e42
|
3 |
+
size 10229968
|
checkpoint-1500/global_step1500/mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2cd7b89731690be67d9dbd7293d0c17e94171c9a1371b2ae65a59441c46db33c
|
3 |
+
size 13740082
|
checkpoint-1500/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step1500
|
checkpoint-1500/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ca21a878c0bb20065a7b92ab1e289e486e15ea4837b3a41b9116f480ec7aa724
|
3 |
+
size 18032
|
checkpoint-1500/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e1902a238d9f23200cf562962dc21ab231af2270932085e2207b1e501534d30c
|
3 |
+
size 18032
|
checkpoint-1500/rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a1a997fd37e6ab137dc53b4b09331a9e0f028b8679a1614905e837f63ec94fb6
|
3 |
+
size 18032
|
checkpoint-1500/rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:099f92cc705087b82dff4bdc4ca07bad927f5d614c3b234c1340640a0c17da59
|
3 |
+
size 18032
|