--- library_name: peft language: - it base_model: b-brave/asr_double_training_15-10-2024_merged tags: - generated_from_trainer datasets: - b-brave/speech_disorders_voice_edit metrics: - wer model-index: - name: Whisper Medium results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: b-brave/speech_disorders_voice_edit type: b-brave/speech_disorders_voice_edit config: default split: test args: default metrics: - type: wer value: 37.05080545229244 name: Wer --- # Whisper Medium This model is a fine-tuned version of [b-brave/asr_double_training_15-10-2024_merged](https://huggingface.co/b-brave/asr_double_training_15-10-2024_merged) on the b-brave/speech_disorders_voice_edit dataset. It achieves the following results on the evaluation set: - Loss: 0.4433 - Wer: 37.0508 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 150 - num_epochs: 8 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.1148 | 1.3245 | 100 | 0.4660 | 36.0595 | | 0.0889 | 2.6490 | 200 | 0.4470 | 39.0335 | | 0.0689 | 3.9735 | 300 | 0.4346 | 36.1834 | | 0.0424 | 5.2980 | 400 | 0.4367 | 36.0595 | | 0.0288 | 6.6225 | 500 | 0.4420 | 36.3073 | | 0.0273 | 7.9470 | 600 | 0.4433 | 37.0508 | ### Framework versions - PEFT 0.13.2 - Transformers 4.45.2 - Pytorch 2.2.0 - Datasets 3.1.0 - Tokenizers 0.20.3