--- library_name: transformers language: - spa license: mit base_model: pyannote/speaker-diarization-3.1 tags: - speaker-diarization - speaker-segmentation - generated_from_trainer datasets: - diarizers-community/callhome model-index: - name: speaker-segmentation-fine-tuned-callhome-spa results: [] --- # speaker-segmentation-fine-tuned-callhome-spa This model is a fine-tuned version of [pyannote/speaker-diarization-3.1](https://huggingface.co/pyannote/speaker-diarization-3.1) on the diarizers-community/callhome dataset. It achieves the following results on the evaluation set: - Loss: 0.5595 - Der: 0.2894 - False Alarm: 0.2353 - Missed Detection: 0.0536 - Confusion: 0.0005 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Der | False Alarm | Missed Detection | Confusion | |:-------------:|:-----:|:----:|:---------------:|:------:|:-----------:|:----------------:|:---------:| | 0.3614 | 1.0 | 226 | 0.4962 | 0.2910 | 0.2389 | 0.0520 | 0.0001 | | 0.3465 | 2.0 | 452 | 0.5067 | 0.2860 | 0.2179 | 0.0679 | 0.0002 | | 0.3325 | 3.0 | 678 | 0.5343 | 0.2941 | 0.2300 | 0.0636 | 0.0005 | | 0.3189 | 4.0 | 904 | 0.5613 | 0.2906 | 0.2380 | 0.0522 | 0.0004 | | 0.3238 | 5.0 | 1130 | 0.5595 | 0.2894 | 0.2353 | 0.0536 | 0.0005 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.1 - Datasets 3.0.1 - Tokenizers 0.20.0