--- library_name: transformers language: - spa license: mit base_model: pyannote/speaker-diarization-3.1 tags: - speaker-diarization - speaker-segmentation - generated_from_trainer datasets: - diarizers-community/callhome model-index: - name: speaker-segmentation-fine-tuned-callhome-spa results: [] --- # speaker-segmentation-fine-tuned-callhome-spa This model is a fine-tuned version of [pyannote/speaker-diarization-3.1](https://huggingface.co/pyannote/speaker-diarization-3.1) on the diarizers-community/callhome dataset. It achieves the following results on the evaluation set: - Loss: 0.5724 - Der: 0.3391 - False Alarm: 0.2612 - Missed Detection: 0.0776 - Confusion: 0.0003 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Der | False Alarm | Missed Detection | Confusion | |:-------------:|:-----:|:----:|:---------------:|:------:|:-----------:|:----------------:|:---------:| | 0.4184 | 1.0 | 230 | 0.4700 | 0.2893 | 0.2341 | 0.0546 | 0.0006 | | 0.4075 | 2.0 | 460 | 0.5348 | 0.3197 | 0.2567 | 0.0625 | 0.0005 | | 0.3941 | 3.0 | 690 | 0.5296 | 0.3134 | 0.2608 | 0.0525 | 0.0001 | | 0.3902 | 4.0 | 920 | 0.5936 | 0.3624 | 0.2612 | 0.1009 | 0.0003 | | 0.389 | 5.0 | 1150 | 0.5724 | 0.3391 | 0.2612 | 0.0776 | 0.0003 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.1 - Datasets 3.0.1 - Tokenizers 0.20.0