--- license: apache-2.0 base_model: distilbert-base-multilingual-cased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: hindi-distilbert-ner results: [] --- # hindi-distilbert-ner This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0287 - Precision: 0.8882 - Recall: 0.9279 - F1: 0.9076 - Accuracy: 0.9934 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.3007 | 1.0 | 882 | 0.0731 | 0.7217 | 0.7906 | 0.7546 | 0.9807 | | 0.0541 | 2.0 | 1764 | 0.0392 | 0.8475 | 0.9088 | 0.8771 | 0.9905 | | 0.0274 | 3.0 | 2646 | 0.0287 | 0.8882 | 0.9279 | 0.9076 | 0.9934 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1