Upload hands_on.ipynb
Browse files- hands_on.ipynb +1002 -0
hands_on.ipynb
ADDED
@@ -0,0 +1,1002 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"from huggingface_hub import notebook_login\n",
|
10 |
+
"notebook_login()"
|
11 |
+
]
|
12 |
+
},
|
13 |
+
{
|
14 |
+
"cell_type": "code",
|
15 |
+
"execution_count": 1,
|
16 |
+
"metadata": {},
|
17 |
+
"outputs": [],
|
18 |
+
"source": [
|
19 |
+
"from datasets import load_dataset, DatasetDict"
|
20 |
+
]
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"cell_type": "code",
|
24 |
+
"execution_count": 2,
|
25 |
+
"metadata": {},
|
26 |
+
"outputs": [
|
27 |
+
{
|
28 |
+
"data": {
|
29 |
+
"text/plain": [
|
30 |
+
"Dataset({\n",
|
31 |
+
" features: ['path', 'audio', 'transcription', 'english_transcription', 'intent_class', 'lang_id'],\n",
|
32 |
+
" num_rows: 563\n",
|
33 |
+
"})"
|
34 |
+
]
|
35 |
+
},
|
36 |
+
"execution_count": 2,
|
37 |
+
"metadata": {},
|
38 |
+
"output_type": "execute_result"
|
39 |
+
}
|
40 |
+
],
|
41 |
+
"source": [
|
42 |
+
"minds14_train = load_dataset(\n",
|
43 |
+
" \"PolyAI/minds14\", \n",
|
44 |
+
" \"en-US\",\n",
|
45 |
+
" split=\"train\"\n",
|
46 |
+
")\n",
|
47 |
+
"minds14_train"
|
48 |
+
]
|
49 |
+
},
|
50 |
+
{
|
51 |
+
"cell_type": "code",
|
52 |
+
"execution_count": 3,
|
53 |
+
"metadata": {},
|
54 |
+
"outputs": [
|
55 |
+
{
|
56 |
+
"data": {
|
57 |
+
"text/plain": [
|
58 |
+
"DatasetDict({\n",
|
59 |
+
" train: Dataset({\n",
|
60 |
+
" features: ['path', 'audio', 'transcription', 'english_transcription', 'intent_class', 'lang_id'],\n",
|
61 |
+
" num_rows: 450\n",
|
62 |
+
" })\n",
|
63 |
+
" test: Dataset({\n",
|
64 |
+
" features: ['path', 'audio', 'transcription', 'english_transcription', 'intent_class', 'lang_id'],\n",
|
65 |
+
" num_rows: 113\n",
|
66 |
+
" })\n",
|
67 |
+
"})"
|
68 |
+
]
|
69 |
+
},
|
70 |
+
"execution_count": 3,
|
71 |
+
"metadata": {},
|
72 |
+
"output_type": "execute_result"
|
73 |
+
}
|
74 |
+
],
|
75 |
+
"source": [
|
76 |
+
"minds14 = DatasetDict()\n",
|
77 |
+
"\n",
|
78 |
+
"minds14[\"train\"] = minds14_train.select(range(450))\n",
|
79 |
+
"minds14[\"test\"] = minds14_train.select(range(450, 563))\n",
|
80 |
+
"\n",
|
81 |
+
"minds14"
|
82 |
+
]
|
83 |
+
},
|
84 |
+
{
|
85 |
+
"cell_type": "code",
|
86 |
+
"execution_count": 4,
|
87 |
+
"metadata": {},
|
88 |
+
"outputs": [
|
89 |
+
{
|
90 |
+
"data": {
|
91 |
+
"text/plain": [
|
92 |
+
"DatasetDict({\n",
|
93 |
+
" train: Dataset({\n",
|
94 |
+
" features: ['audio', 'transcription'],\n",
|
95 |
+
" num_rows: 450\n",
|
96 |
+
" })\n",
|
97 |
+
" test: Dataset({\n",
|
98 |
+
" features: ['audio', 'transcription'],\n",
|
99 |
+
" num_rows: 113\n",
|
100 |
+
" })\n",
|
101 |
+
"})"
|
102 |
+
]
|
103 |
+
},
|
104 |
+
"execution_count": 4,
|
105 |
+
"metadata": {},
|
106 |
+
"output_type": "execute_result"
|
107 |
+
}
|
108 |
+
],
|
109 |
+
"source": [
|
110 |
+
"minds14 = minds14.select_columns(['audio', 'transcription'])\n",
|
111 |
+
"minds14"
|
112 |
+
]
|
113 |
+
},
|
114 |
+
{
|
115 |
+
"cell_type": "code",
|
116 |
+
"execution_count": 5,
|
117 |
+
"metadata": {},
|
118 |
+
"outputs": [],
|
119 |
+
"source": [
|
120 |
+
"from transformers import WhisperProcessor\n",
|
121 |
+
"\n",
|
122 |
+
"processor = WhisperProcessor.from_pretrained(\n",
|
123 |
+
" \"openai/whisper-tiny\", language=\"english\", task=\"transcribe\"\n",
|
124 |
+
")"
|
125 |
+
]
|
126 |
+
},
|
127 |
+
{
|
128 |
+
"cell_type": "code",
|
129 |
+
"execution_count": 6,
|
130 |
+
"metadata": {},
|
131 |
+
"outputs": [
|
132 |
+
{
|
133 |
+
"data": {
|
134 |
+
"text/plain": [
|
135 |
+
"{'audio': Audio(sampling_rate=8000, mono=True, decode=True, id=None),\n",
|
136 |
+
" 'transcription': Value(dtype='string', id=None)}"
|
137 |
+
]
|
138 |
+
},
|
139 |
+
"execution_count": 6,
|
140 |
+
"metadata": {},
|
141 |
+
"output_type": "execute_result"
|
142 |
+
}
|
143 |
+
],
|
144 |
+
"source": [
|
145 |
+
"minds14[\"train\"].features"
|
146 |
+
]
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"cell_type": "code",
|
150 |
+
"execution_count": 7,
|
151 |
+
"metadata": {},
|
152 |
+
"outputs": [],
|
153 |
+
"source": [
|
154 |
+
"from datasets import Audio\n",
|
155 |
+
"\n",
|
156 |
+
"sampling_rate = processor.feature_extractor.sampling_rate\n",
|
157 |
+
"minds14 = minds14.cast_column(\"audio\", Audio(sampling_rate=sampling_rate))"
|
158 |
+
]
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"cell_type": "code",
|
162 |
+
"execution_count": 8,
|
163 |
+
"metadata": {},
|
164 |
+
"outputs": [],
|
165 |
+
"source": [
|
166 |
+
"def prepare_dataset(example):\n",
|
167 |
+
" audio = example[\"audio\"]\n",
|
168 |
+
"\n",
|
169 |
+
" example = processor(\n",
|
170 |
+
" audio=audio[\"array\"],\n",
|
171 |
+
" sampling_rate=audio[\"sampling_rate\"],\n",
|
172 |
+
" text=example[\"transcription\"],\n",
|
173 |
+
" )\n",
|
174 |
+
"\n",
|
175 |
+
" # compute input length of audio sample in seconds\n",
|
176 |
+
" example[\"input_length\"] = len(audio[\"array\"]) / audio[\"sampling_rate\"]\n",
|
177 |
+
"\n",
|
178 |
+
" return example"
|
179 |
+
]
|
180 |
+
},
|
181 |
+
{
|
182 |
+
"cell_type": "code",
|
183 |
+
"execution_count": 9,
|
184 |
+
"metadata": {},
|
185 |
+
"outputs": [
|
186 |
+
{
|
187 |
+
"data": {
|
188 |
+
"application/vnd.jupyter.widget-view+json": {
|
189 |
+
"model_id": "356d0ccec48f41b9ad10504ae0ca4813",
|
190 |
+
"version_major": 2,
|
191 |
+
"version_minor": 0
|
192 |
+
},
|
193 |
+
"text/plain": [
|
194 |
+
"Map: 0%| | 0/450 [00:00<?, ? examples/s]"
|
195 |
+
]
|
196 |
+
},
|
197 |
+
"metadata": {},
|
198 |
+
"output_type": "display_data"
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"data": {
|
202 |
+
"application/vnd.jupyter.widget-view+json": {
|
203 |
+
"model_id": "ef753a60316c4115924c49052eeb411d",
|
204 |
+
"version_major": 2,
|
205 |
+
"version_minor": 0
|
206 |
+
},
|
207 |
+
"text/plain": [
|
208 |
+
"Map: 0%| | 0/113 [00:00<?, ? examples/s]"
|
209 |
+
]
|
210 |
+
},
|
211 |
+
"metadata": {},
|
212 |
+
"output_type": "display_data"
|
213 |
+
}
|
214 |
+
],
|
215 |
+
"source": [
|
216 |
+
"minds14 = minds14.map(\n",
|
217 |
+
" prepare_dataset, remove_columns=minds14.column_names[\"train\"], num_proc=1\n",
|
218 |
+
")"
|
219 |
+
]
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"cell_type": "code",
|
223 |
+
"execution_count": 10,
|
224 |
+
"metadata": {},
|
225 |
+
"outputs": [],
|
226 |
+
"source": [
|
227 |
+
"max_input_length = 30.0\n",
|
228 |
+
"def is_audio_in_length_range(length):\n",
|
229 |
+
" return length < max_input_length"
|
230 |
+
]
|
231 |
+
},
|
232 |
+
{
|
233 |
+
"cell_type": "code",
|
234 |
+
"execution_count": 11,
|
235 |
+
"metadata": {},
|
236 |
+
"outputs": [
|
237 |
+
{
|
238 |
+
"data": {
|
239 |
+
"application/vnd.jupyter.widget-view+json": {
|
240 |
+
"model_id": "2292d10d955d4d958e07849f0abb57c8",
|
241 |
+
"version_major": 2,
|
242 |
+
"version_minor": 0
|
243 |
+
},
|
244 |
+
"text/plain": [
|
245 |
+
"Filter: 0%| | 0/450 [00:00<?, ? examples/s]"
|
246 |
+
]
|
247 |
+
},
|
248 |
+
"metadata": {},
|
249 |
+
"output_type": "display_data"
|
250 |
+
}
|
251 |
+
],
|
252 |
+
"source": [
|
253 |
+
"minds14[\"train\"] = minds14[\"train\"].filter(\n",
|
254 |
+
" is_audio_in_length_range,\n",
|
255 |
+
" input_columns=[\"input_length\"],\n",
|
256 |
+
")"
|
257 |
+
]
|
258 |
+
},
|
259 |
+
{
|
260 |
+
"cell_type": "code",
|
261 |
+
"execution_count": 12,
|
262 |
+
"metadata": {},
|
263 |
+
"outputs": [
|
264 |
+
{
|
265 |
+
"data": {
|
266 |
+
"text/plain": [
|
267 |
+
"Dataset({\n",
|
268 |
+
" features: ['input_features', 'labels', 'input_length'],\n",
|
269 |
+
" num_rows: 445\n",
|
270 |
+
"})"
|
271 |
+
]
|
272 |
+
},
|
273 |
+
"execution_count": 12,
|
274 |
+
"metadata": {},
|
275 |
+
"output_type": "execute_result"
|
276 |
+
}
|
277 |
+
],
|
278 |
+
"source": [
|
279 |
+
"minds14['train']"
|
280 |
+
]
|
281 |
+
},
|
282 |
+
{
|
283 |
+
"cell_type": "markdown",
|
284 |
+
"metadata": {},
|
285 |
+
"source": [
|
286 |
+
"### Training and Evaluation"
|
287 |
+
]
|
288 |
+
},
|
289 |
+
{
|
290 |
+
"cell_type": "code",
|
291 |
+
"execution_count": 13,
|
292 |
+
"metadata": {},
|
293 |
+
"outputs": [],
|
294 |
+
"source": [
|
295 |
+
"import torch\n",
|
296 |
+
"\n",
|
297 |
+
"from dataclasses import dataclass\n",
|
298 |
+
"from typing import Any, Dict, List, Union\n",
|
299 |
+
"\n",
|
300 |
+
"\n",
|
301 |
+
"@dataclass\n",
|
302 |
+
"class DataCollatorSpeechSeq2SeqWithPadding:\n",
|
303 |
+
" processor: Any\n",
|
304 |
+
"\n",
|
305 |
+
" def __call__(\n",
|
306 |
+
" self, features: List[Dict[str, Union[List[int], torch.Tensor]]]\n",
|
307 |
+
" ) -> Dict[str, torch.Tensor]:\n",
|
308 |
+
" # split inputs and labels since they have to be of different lengths and need different padding methods\n",
|
309 |
+
" # first treat the audio inputs by simply returning torch tensors\n",
|
310 |
+
" input_features = [\n",
|
311 |
+
" {\"input_features\": feature[\"input_features\"][0]} for feature in features\n",
|
312 |
+
" ]\n",
|
313 |
+
" batch = self.processor.feature_extractor.pad(input_features, return_tensors=\"pt\")\n",
|
314 |
+
"\n",
|
315 |
+
" # get the tokenized label sequences\n",
|
316 |
+
" label_features = [{\"input_ids\": feature[\"labels\"]} for feature in features]\n",
|
317 |
+
" # pad the labels to max length\n",
|
318 |
+
" labels_batch = self.processor.tokenizer.pad(label_features, return_tensors=\"pt\")\n",
|
319 |
+
"\n",
|
320 |
+
" # replace padding with -100 to ignore loss correctly\n",
|
321 |
+
" labels = labels_batch[\"input_ids\"].masked_fill(\n",
|
322 |
+
" labels_batch.attention_mask.ne(1), -100\n",
|
323 |
+
" )\n",
|
324 |
+
"\n",
|
325 |
+
" # if bos token is appended in previous tokenization step,\n",
|
326 |
+
" # cut bos token here as it's append later anyways\n",
|
327 |
+
" if (labels[:, 0] == self.processor.tokenizer.bos_token_id).all().cpu().item():\n",
|
328 |
+
" labels = labels[:, 1:]\n",
|
329 |
+
"\n",
|
330 |
+
" batch[\"labels\"] = labels\n",
|
331 |
+
"\n",
|
332 |
+
" return batch"
|
333 |
+
]
|
334 |
+
},
|
335 |
+
{
|
336 |
+
"cell_type": "code",
|
337 |
+
"execution_count": 14,
|
338 |
+
"metadata": {},
|
339 |
+
"outputs": [],
|
340 |
+
"source": [
|
341 |
+
"data_collator = DataCollatorSpeechSeq2SeqWithPadding(processor=processor)"
|
342 |
+
]
|
343 |
+
},
|
344 |
+
{
|
345 |
+
"cell_type": "code",
|
346 |
+
"execution_count": 15,
|
347 |
+
"metadata": {},
|
348 |
+
"outputs": [],
|
349 |
+
"source": [
|
350 |
+
"import evaluate\n",
|
351 |
+
"from transformers.models.whisper.english_normalizer import BasicTextNormalizer\n",
|
352 |
+
"\n",
|
353 |
+
"metric = evaluate.load(\"wer\")\n",
|
354 |
+
"normalizer = BasicTextNormalizer()\n",
|
355 |
+
"\n",
|
356 |
+
"def compute_metrics(pred):\n",
|
357 |
+
" pred_ids = pred.predictions\n",
|
358 |
+
" label_ids = pred.label_ids\n",
|
359 |
+
"\n",
|
360 |
+
" # replace -100 with the pad_token_id\n",
|
361 |
+
" label_ids[label_ids == -100] = processor.tokenizer.pad_token_id\n",
|
362 |
+
"\n",
|
363 |
+
" # we do not want to group tokens when computing the metrics\n",
|
364 |
+
" pred_str = processor.batch_decode(pred_ids, skip_special_tokens=True)\n",
|
365 |
+
" label_str = processor.batch_decode(label_ids, skip_special_tokens=True)\n",
|
366 |
+
"\n",
|
367 |
+
" # compute orthographic wer\n",
|
368 |
+
" wer_ortho = 100 * metric.compute(predictions=pred_str, references=label_str)\n",
|
369 |
+
"\n",
|
370 |
+
" # compute normalised WER\n",
|
371 |
+
" pred_str_norm = [normalizer(pred) for pred in pred_str]\n",
|
372 |
+
" label_str_norm = [normalizer(label) for label in label_str]\n",
|
373 |
+
" # filtering step to only evaluate the samples that correspond to non-zero references:\n",
|
374 |
+
" pred_str_norm = [\n",
|
375 |
+
" pred_str_norm[i] for i in range(len(pred_str_norm)) if len(label_str_norm[i]) > 0\n",
|
376 |
+
" ]\n",
|
377 |
+
" label_str_norm = [\n",
|
378 |
+
" label_str_norm[i]\n",
|
379 |
+
" for i in range(len(label_str_norm))\n",
|
380 |
+
" if len(label_str_norm[i]) > 0\n",
|
381 |
+
" ]\n",
|
382 |
+
"\n",
|
383 |
+
" wer = 100 * metric.compute(predictions=pred_str_norm, references=label_str_norm)\n",
|
384 |
+
"\n",
|
385 |
+
" return {\"wer_ortho\": wer_ortho, \"wer\": wer}"
|
386 |
+
]
|
387 |
+
},
|
388 |
+
{
|
389 |
+
"cell_type": "code",
|
390 |
+
"execution_count": 16,
|
391 |
+
"metadata": {},
|
392 |
+
"outputs": [],
|
393 |
+
"source": [
|
394 |
+
"from transformers import WhisperForConditionalGeneration\n",
|
395 |
+
"model = WhisperForConditionalGeneration.from_pretrained(\"openai/whisper-tiny\")"
|
396 |
+
]
|
397 |
+
},
|
398 |
+
{
|
399 |
+
"cell_type": "code",
|
400 |
+
"execution_count": 17,
|
401 |
+
"metadata": {},
|
402 |
+
"outputs": [],
|
403 |
+
"source": [
|
404 |
+
"from functools import partial\n",
|
405 |
+
"\n",
|
406 |
+
"# disable cache during training since it's incompatible with gradient checkpointing\n",
|
407 |
+
"model.config.use_cache = False\n",
|
408 |
+
"\n",
|
409 |
+
"# set language and task for generation and re-enable cache\n",
|
410 |
+
"model.generate = partial(\n",
|
411 |
+
" model.generate, language=\"english\", task=\"transcribe\", use_cache=True\n",
|
412 |
+
")"
|
413 |
+
]
|
414 |
+
},
|
415 |
+
{
|
416 |
+
"cell_type": "code",
|
417 |
+
"execution_count": 18,
|
418 |
+
"metadata": {},
|
419 |
+
"outputs": [],
|
420 |
+
"source": [
|
421 |
+
"from transformers import Seq2SeqTrainingArguments\n",
|
422 |
+
"\n",
|
423 |
+
"training_args = Seq2SeqTrainingArguments(\n",
|
424 |
+
" output_dir=\"./whisper-tiny-en-us-minds14\", # name on the HF Hub\n",
|
425 |
+
" per_device_train_batch_size=16,\n",
|
426 |
+
" gradient_accumulation_steps=1, # increase by 2x for every 2x decrease in batch size\n",
|
427 |
+
" learning_rate=1e-5,\n",
|
428 |
+
" lr_scheduler_type=\"constant_with_warmup\",\n",
|
429 |
+
" warmup_steps=50,\n",
|
430 |
+
" max_steps=4000, # increase to 4000 if you have your own GPU or a Colab paid plan\n",
|
431 |
+
" gradient_checkpointing=True,\n",
|
432 |
+
" # fp16=True,\n",
|
433 |
+
" # fp16_full_eval=True,\n",
|
434 |
+
" evaluation_strategy=\"steps\",\n",
|
435 |
+
" per_device_eval_batch_size=16,\n",
|
436 |
+
" predict_with_generate=True,\n",
|
437 |
+
" generation_max_length=225,\n",
|
438 |
+
" save_steps=500,\n",
|
439 |
+
" eval_steps=500,\n",
|
440 |
+
" logging_steps=25,\n",
|
441 |
+
" report_to=[\"tensorboard\"],\n",
|
442 |
+
" load_best_model_at_end=True,\n",
|
443 |
+
" metric_for_best_model=\"wer\",\n",
|
444 |
+
" greater_is_better=False,\n",
|
445 |
+
" # push_to_hub=False,\n",
|
446 |
+
")"
|
447 |
+
]
|
448 |
+
},
|
449 |
+
{
|
450 |
+
"cell_type": "code",
|
451 |
+
"execution_count": 19,
|
452 |
+
"metadata": {},
|
453 |
+
"outputs": [],
|
454 |
+
"source": [
|
455 |
+
"from transformers import Seq2SeqTrainer\n",
|
456 |
+
"\n",
|
457 |
+
"trainer = Seq2SeqTrainer(\n",
|
458 |
+
" args=training_args,\n",
|
459 |
+
" model=model,\n",
|
460 |
+
" train_dataset=minds14[\"train\"],\n",
|
461 |
+
" eval_dataset=minds14[\"test\"],\n",
|
462 |
+
" data_collator=data_collator,\n",
|
463 |
+
" compute_metrics=compute_metrics,\n",
|
464 |
+
" tokenizer=processor,\n",
|
465 |
+
")"
|
466 |
+
]
|
467 |
+
},
|
468 |
+
{
|
469 |
+
"cell_type": "code",
|
470 |
+
"execution_count": 20,
|
471 |
+
"metadata": {},
|
472 |
+
"outputs": [
|
473 |
+
{
|
474 |
+
"data": {
|
475 |
+
"application/vnd.jupyter.widget-view+json": {
|
476 |
+
"model_id": "9dcf642e434e48468854ec1cbaa6120c",
|
477 |
+
"version_major": 2,
|
478 |
+
"version_minor": 0
|
479 |
+
},
|
480 |
+
"text/plain": [
|
481 |
+
" 0%| | 0/4000 [00:00<?, ?it/s]"
|
482 |
+
]
|
483 |
+
},
|
484 |
+
"metadata": {},
|
485 |
+
"output_type": "display_data"
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"name": "stderr",
|
489 |
+
"output_type": "stream",
|
490 |
+
"text": [
|
491 |
+
"/Users/mkhojira/Projects/mml/audio-course/venv/lib/python3.8/site-packages/torch/utils/checkpoint.py:429: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n",
|
492 |
+
" warnings.warn(\n"
|
493 |
+
]
|
494 |
+
},
|
495 |
+
{
|
496 |
+
"name": "stdout",
|
497 |
+
"output_type": "stream",
|
498 |
+
"text": [
|
499 |
+
"{'loss': 1.584, 'learning_rate': 5e-06, 'epoch': 0.89}\n",
|
500 |
+
"{'loss': 0.6567, 'learning_rate': 1e-05, 'epoch': 1.79}\n",
|
501 |
+
"{'loss': 0.1857, 'learning_rate': 1e-05, 'epoch': 2.68}\n",
|
502 |
+
"{'loss': 0.1218, 'learning_rate': 1e-05, 'epoch': 3.57}\n",
|
503 |
+
"{'loss': 0.0876, 'learning_rate': 1e-05, 'epoch': 4.46}\n",
|
504 |
+
"{'loss': 0.0512, 'learning_rate': 1e-05, 'epoch': 5.36}\n",
|
505 |
+
"{'loss': 0.0299, 'learning_rate': 1e-05, 'epoch': 6.25}\n",
|
506 |
+
"{'loss': 0.016, 'learning_rate': 1e-05, 'epoch': 7.14}\n",
|
507 |
+
"{'loss': 0.0085, 'learning_rate': 1e-05, 'epoch': 8.04}\n",
|
508 |
+
"{'loss': 0.0038, 'learning_rate': 1e-05, 'epoch': 8.93}\n",
|
509 |
+
"{'loss': 0.0028, 'learning_rate': 1e-05, 'epoch': 9.82}\n",
|
510 |
+
"{'loss': 0.0023, 'learning_rate': 1e-05, 'epoch': 10.71}\n",
|
511 |
+
"{'loss': 0.0015, 'learning_rate': 1e-05, 'epoch': 11.61}\n",
|
512 |
+
"{'loss': 0.0012, 'learning_rate': 1e-05, 'epoch': 12.5}\n",
|
513 |
+
"{'loss': 0.0011, 'learning_rate': 1e-05, 'epoch': 13.39}\n",
|
514 |
+
"{'loss': 0.0009, 'learning_rate': 1e-05, 'epoch': 14.29}\n",
|
515 |
+
"{'loss': 0.0008, 'learning_rate': 1e-05, 'epoch': 15.18}\n",
|
516 |
+
"{'loss': 0.0007, 'learning_rate': 1e-05, 'epoch': 16.07}\n",
|
517 |
+
"{'loss': 0.0007, 'learning_rate': 1e-05, 'epoch': 16.96}\n",
|
518 |
+
"{'loss': 0.0006, 'learning_rate': 1e-05, 'epoch': 17.86}\n"
|
519 |
+
]
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"data": {
|
523 |
+
"application/vnd.jupyter.widget-view+json": {
|
524 |
+
"model_id": "6448ea85978f4e14ad837324e482d808",
|
525 |
+
"version_major": 2,
|
526 |
+
"version_minor": 0
|
527 |
+
},
|
528 |
+
"text/plain": [
|
529 |
+
" 0%| | 0/8 [00:00<?, ?it/s]"
|
530 |
+
]
|
531 |
+
},
|
532 |
+
"metadata": {},
|
533 |
+
"output_type": "display_data"
|
534 |
+
},
|
535 |
+
{
|
536 |
+
"name": "stdout",
|
537 |
+
"output_type": "stream",
|
538 |
+
"text": [
|
539 |
+
"{'eval_loss': 0.25609758496284485, 'eval_wer_ortho': 35.90376310919186, 'eval_wer': 35.30106257378985, 'eval_runtime': 27.7439, 'eval_samples_per_second': 4.073, 'eval_steps_per_second': 0.288, 'epoch': 17.86}\n"
|
540 |
+
]
|
541 |
+
},
|
542 |
+
{
|
543 |
+
"name": "stderr",
|
544 |
+
"output_type": "stream",
|
545 |
+
"text": [
|
546 |
+
"/Users/mkhojira/Projects/mml/audio-course/venv/lib/python3.8/site-packages/torch/utils/checkpoint.py:429: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n",
|
547 |
+
" warnings.warn(\n"
|
548 |
+
]
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"name": "stdout",
|
552 |
+
"output_type": "stream",
|
553 |
+
"text": [
|
554 |
+
"{'loss': 0.0006, 'learning_rate': 1e-05, 'epoch': 18.75}\n",
|
555 |
+
"{'loss': 0.0005, 'learning_rate': 1e-05, 'epoch': 19.64}\n",
|
556 |
+
"{'loss': 0.0005, 'learning_rate': 1e-05, 'epoch': 20.54}\n",
|
557 |
+
"{'loss': 0.0005, 'learning_rate': 1e-05, 'epoch': 21.43}\n",
|
558 |
+
"{'loss': 0.0004, 'learning_rate': 1e-05, 'epoch': 22.32}\n",
|
559 |
+
"{'loss': 0.0004, 'learning_rate': 1e-05, 'epoch': 23.21}\n",
|
560 |
+
"{'loss': 0.0004, 'learning_rate': 1e-05, 'epoch': 24.11}\n",
|
561 |
+
"{'loss': 0.0003, 'learning_rate': 1e-05, 'epoch': 25.0}\n",
|
562 |
+
"{'loss': 0.0003, 'learning_rate': 1e-05, 'epoch': 25.89}\n",
|
563 |
+
"{'loss': 0.0003, 'learning_rate': 1e-05, 'epoch': 26.79}\n",
|
564 |
+
"{'loss': 0.0003, 'learning_rate': 1e-05, 'epoch': 27.68}\n",
|
565 |
+
"{'loss': 0.0003, 'learning_rate': 1e-05, 'epoch': 28.57}\n",
|
566 |
+
"{'loss': 0.0003, 'learning_rate': 1e-05, 'epoch': 29.46}\n",
|
567 |
+
"{'loss': 0.0002, 'learning_rate': 1e-05, 'epoch': 30.36}\n",
|
568 |
+
"{'loss': 0.0002, 'learning_rate': 1e-05, 'epoch': 31.25}\n",
|
569 |
+
"{'loss': 0.0002, 'learning_rate': 1e-05, 'epoch': 32.14}\n",
|
570 |
+
"{'loss': 0.0002, 'learning_rate': 1e-05, 'epoch': 33.04}\n",
|
571 |
+
"{'loss': 0.0002, 'learning_rate': 1e-05, 'epoch': 33.93}\n",
|
572 |
+
"{'loss': 0.0002, 'learning_rate': 1e-05, 'epoch': 34.82}\n",
|
573 |
+
"{'loss': 0.0002, 'learning_rate': 1e-05, 'epoch': 35.71}\n"
|
574 |
+
]
|
575 |
+
},
|
576 |
+
{
|
577 |
+
"data": {
|
578 |
+
"application/vnd.jupyter.widget-view+json": {
|
579 |
+
"model_id": "bb97f0dd1de841f4a6904e6240ffa58a",
|
580 |
+
"version_major": 2,
|
581 |
+
"version_minor": 0
|
582 |
+
},
|
583 |
+
"text/plain": [
|
584 |
+
" 0%| | 0/8 [00:00<?, ?it/s]"
|
585 |
+
]
|
586 |
+
},
|
587 |
+
"metadata": {},
|
588 |
+
"output_type": "display_data"
|
589 |
+
},
|
590 |
+
{
|
591 |
+
"name": "stdout",
|
592 |
+
"output_type": "stream",
|
593 |
+
"text": [
|
594 |
+
"{'eval_loss': 0.2792435586452484, 'eval_wer_ortho': 36.4589759407773, 'eval_wer': 35.9504132231405, 'eval_runtime': 20.8669, 'eval_samples_per_second': 5.415, 'eval_steps_per_second': 0.383, 'epoch': 35.71}\n"
|
595 |
+
]
|
596 |
+
},
|
597 |
+
{
|
598 |
+
"name": "stderr",
|
599 |
+
"output_type": "stream",
|
600 |
+
"text": [
|
601 |
+
"/Users/mkhojira/Projects/mml/audio-course/venv/lib/python3.8/site-packages/torch/utils/checkpoint.py:429: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n",
|
602 |
+
" warnings.warn(\n"
|
603 |
+
]
|
604 |
+
},
|
605 |
+
{
|
606 |
+
"name": "stdout",
|
607 |
+
"output_type": "stream",
|
608 |
+
"text": [
|
609 |
+
"{'loss': 0.0002, 'learning_rate': 1e-05, 'epoch': 36.61}\n",
|
610 |
+
"{'loss': 0.0002, 'learning_rate': 1e-05, 'epoch': 37.5}\n",
|
611 |
+
"{'loss': 0.0002, 'learning_rate': 1e-05, 'epoch': 38.39}\n",
|
612 |
+
"{'loss': 0.0002, 'learning_rate': 1e-05, 'epoch': 39.29}\n",
|
613 |
+
"{'loss': 0.0002, 'learning_rate': 1e-05, 'epoch': 40.18}\n",
|
614 |
+
"{'loss': 0.0001, 'learning_rate': 1e-05, 'epoch': 41.07}\n",
|
615 |
+
"{'loss': 0.0001, 'learning_rate': 1e-05, 'epoch': 41.96}\n",
|
616 |
+
"{'loss': 0.0001, 'learning_rate': 1e-05, 'epoch': 42.86}\n",
|
617 |
+
"{'loss': 0.0001, 'learning_rate': 1e-05, 'epoch': 43.75}\n",
|
618 |
+
"{'loss': 0.0001, 'learning_rate': 1e-05, 'epoch': 44.64}\n",
|
619 |
+
"{'loss': 0.0001, 'learning_rate': 1e-05, 'epoch': 45.54}\n",
|
620 |
+
"{'loss': 0.0001, 'learning_rate': 1e-05, 'epoch': 46.43}\n",
|
621 |
+
"{'loss': 0.0001, 'learning_rate': 1e-05, 'epoch': 47.32}\n",
|
622 |
+
"{'loss': 0.0001, 'learning_rate': 1e-05, 'epoch': 48.21}\n",
|
623 |
+
"{'loss': 0.0001, 'learning_rate': 1e-05, 'epoch': 49.11}\n",
|
624 |
+
"{'loss': 0.0001, 'learning_rate': 1e-05, 'epoch': 50.0}\n",
|
625 |
+
"{'loss': 0.0001, 'learning_rate': 1e-05, 'epoch': 50.89}\n",
|
626 |
+
"{'loss': 0.0001, 'learning_rate': 1e-05, 'epoch': 51.79}\n",
|
627 |
+
"{'loss': 0.0001, 'learning_rate': 1e-05, 'epoch': 52.68}\n",
|
628 |
+
"{'loss': 0.0001, 'learning_rate': 1e-05, 'epoch': 53.57}\n"
|
629 |
+
]
|
630 |
+
},
|
631 |
+
{
|
632 |
+
"data": {
|
633 |
+
"application/vnd.jupyter.widget-view+json": {
|
634 |
+
"model_id": "4f8a8ea4cd774a72a6b89f714f17a78e",
|
635 |
+
"version_major": 2,
|
636 |
+
"version_minor": 0
|
637 |
+
},
|
638 |
+
"text/plain": [
|
639 |
+
" 0%| | 0/8 [00:00<?, ?it/s]"
|
640 |
+
]
|
641 |
+
},
|
642 |
+
"metadata": {},
|
643 |
+
"output_type": "display_data"
|
644 |
+
},
|
645 |
+
{
|
646 |
+
"name": "stdout",
|
647 |
+
"output_type": "stream",
|
648 |
+
"text": [
|
649 |
+
"{'eval_loss': 0.29441583156585693, 'eval_wer_ortho': 36.705737199259715, 'eval_wer': 36.36363636363637, 'eval_runtime': 20.6363, 'eval_samples_per_second': 5.476, 'eval_steps_per_second': 0.388, 'epoch': 53.57}\n"
|
650 |
+
]
|
651 |
+
},
|
652 |
+
{
|
653 |
+
"name": "stderr",
|
654 |
+
"output_type": "stream",
|
655 |
+
"text": [
|
656 |
+
"/Users/mkhojira/Projects/mml/audio-course/venv/lib/python3.8/site-packages/torch/utils/checkpoint.py:429: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n",
|
657 |
+
" warnings.warn(\n"
|
658 |
+
]
|
659 |
+
},
|
660 |
+
{
|
661 |
+
"name": "stdout",
|
662 |
+
"output_type": "stream",
|
663 |
+
"text": [
|
664 |
+
"{'loss': 0.0001, 'learning_rate': 1e-05, 'epoch': 54.46}\n",
|
665 |
+
"{'loss': 0.0001, 'learning_rate': 1e-05, 'epoch': 55.36}\n",
|
666 |
+
"{'loss': 0.0001, 'learning_rate': 1e-05, 'epoch': 56.25}\n",
|
667 |
+
"{'loss': 0.0001, 'learning_rate': 1e-05, 'epoch': 57.14}\n",
|
668 |
+
"{'loss': 0.0001, 'learning_rate': 1e-05, 'epoch': 58.04}\n",
|
669 |
+
"{'loss': 0.0001, 'learning_rate': 1e-05, 'epoch': 58.93}\n",
|
670 |
+
"{'loss': 0.0001, 'learning_rate': 1e-05, 'epoch': 59.82}\n",
|
671 |
+
"{'loss': 0.0001, 'learning_rate': 1e-05, 'epoch': 60.71}\n",
|
672 |
+
"{'loss': 0.0001, 'learning_rate': 1e-05, 'epoch': 61.61}\n",
|
673 |
+
"{'loss': 0.0001, 'learning_rate': 1e-05, 'epoch': 62.5}\n",
|
674 |
+
"{'loss': 0.0001, 'learning_rate': 1e-05, 'epoch': 63.39}\n",
|
675 |
+
"{'loss': 0.0001, 'learning_rate': 1e-05, 'epoch': 64.29}\n",
|
676 |
+
"{'loss': 0.0001, 'learning_rate': 1e-05, 'epoch': 65.18}\n",
|
677 |
+
"{'loss': 0.0001, 'learning_rate': 1e-05, 'epoch': 66.07}\n",
|
678 |
+
"{'loss': 0.0001, 'learning_rate': 1e-05, 'epoch': 66.96}\n",
|
679 |
+
"{'loss': 0.0001, 'learning_rate': 1e-05, 'epoch': 67.86}\n",
|
680 |
+
"{'loss': 0.0001, 'learning_rate': 1e-05, 'epoch': 68.75}\n",
|
681 |
+
"{'loss': 0.0001, 'learning_rate': 1e-05, 'epoch': 69.64}\n",
|
682 |
+
"{'loss': 0.0001, 'learning_rate': 1e-05, 'epoch': 70.54}\n",
|
683 |
+
"{'loss': 0.0001, 'learning_rate': 1e-05, 'epoch': 71.43}\n"
|
684 |
+
]
|
685 |
+
},
|
686 |
+
{
|
687 |
+
"data": {
|
688 |
+
"application/vnd.jupyter.widget-view+json": {
|
689 |
+
"model_id": "c3e15e770b014f84beff76935f5e1069",
|
690 |
+
"version_major": 2,
|
691 |
+
"version_minor": 0
|
692 |
+
},
|
693 |
+
"text/plain": [
|
694 |
+
" 0%| | 0/8 [00:00<?, ?it/s]"
|
695 |
+
]
|
696 |
+
},
|
697 |
+
"metadata": {},
|
698 |
+
"output_type": "display_data"
|
699 |
+
},
|
700 |
+
{
|
701 |
+
"name": "stdout",
|
702 |
+
"output_type": "stream",
|
703 |
+
"text": [
|
704 |
+
"{'eval_loss': 0.30616462230682373, 'eval_wer_ortho': 36.76742751388032, 'eval_wer': 36.481700118063756, 'eval_runtime': 20.6248, 'eval_samples_per_second': 5.479, 'eval_steps_per_second': 0.388, 'epoch': 71.43}\n"
|
705 |
+
]
|
706 |
+
},
|
707 |
+
{
|
708 |
+
"name": "stderr",
|
709 |
+
"output_type": "stream",
|
710 |
+
"text": [
|
711 |
+
"/Users/mkhojira/Projects/mml/audio-course/venv/lib/python3.8/site-packages/torch/utils/checkpoint.py:429: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n",
|
712 |
+
" warnings.warn(\n"
|
713 |
+
]
|
714 |
+
},
|
715 |
+
{
|
716 |
+
"name": "stdout",
|
717 |
+
"output_type": "stream",
|
718 |
+
"text": [
|
719 |
+
"{'loss': 0.0, 'learning_rate': 1e-05, 'epoch': 72.32}\n",
|
720 |
+
"{'loss': 0.0001, 'learning_rate': 1e-05, 'epoch': 73.21}\n",
|
721 |
+
"{'loss': 0.0, 'learning_rate': 1e-05, 'epoch': 74.11}\n",
|
722 |
+
"{'loss': 0.0001, 'learning_rate': 1e-05, 'epoch': 75.0}\n",
|
723 |
+
"{'loss': 0.0, 'learning_rate': 1e-05, 'epoch': 75.89}\n",
|
724 |
+
"{'loss': 0.0, 'learning_rate': 1e-05, 'epoch': 76.79}\n",
|
725 |
+
"{'loss': 0.0001, 'learning_rate': 1e-05, 'epoch': 77.68}\n",
|
726 |
+
"{'loss': 0.0, 'learning_rate': 1e-05, 'epoch': 78.57}\n",
|
727 |
+
"{'loss': 0.0, 'learning_rate': 1e-05, 'epoch': 79.46}\n",
|
728 |
+
"{'loss': 0.0, 'learning_rate': 1e-05, 'epoch': 80.36}\n",
|
729 |
+
"{'loss': 0.0, 'learning_rate': 1e-05, 'epoch': 81.25}\n",
|
730 |
+
"{'loss': 0.0, 'learning_rate': 1e-05, 'epoch': 82.14}\n",
|
731 |
+
"{'loss': 0.0, 'learning_rate': 1e-05, 'epoch': 83.04}\n",
|
732 |
+
"{'loss': 0.0, 'learning_rate': 1e-05, 'epoch': 83.93}\n",
|
733 |
+
"{'loss': 0.0, 'learning_rate': 1e-05, 'epoch': 84.82}\n",
|
734 |
+
"{'loss': 0.0, 'learning_rate': 1e-05, 'epoch': 85.71}\n",
|
735 |
+
"{'loss': 0.0, 'learning_rate': 1e-05, 'epoch': 86.61}\n",
|
736 |
+
"{'loss': 0.0, 'learning_rate': 1e-05, 'epoch': 87.5}\n",
|
737 |
+
"{'loss': 0.0, 'learning_rate': 1e-05, 'epoch': 88.39}\n",
|
738 |
+
"{'loss': 0.0, 'learning_rate': 1e-05, 'epoch': 89.29}\n"
|
739 |
+
]
|
740 |
+
},
|
741 |
+
{
|
742 |
+
"data": {
|
743 |
+
"application/vnd.jupyter.widget-view+json": {
|
744 |
+
"model_id": "287e32b32c004d56bfaabf8398bc0b57",
|
745 |
+
"version_major": 2,
|
746 |
+
"version_minor": 0
|
747 |
+
},
|
748 |
+
"text/plain": [
|
749 |
+
" 0%| | 0/8 [00:00<?, ?it/s]"
|
750 |
+
]
|
751 |
+
},
|
752 |
+
"metadata": {},
|
753 |
+
"output_type": "display_data"
|
754 |
+
},
|
755 |
+
{
|
756 |
+
"name": "stdout",
|
757 |
+
"output_type": "stream",
|
758 |
+
"text": [
|
759 |
+
"{'eval_loss': 0.31588611006736755, 'eval_wer_ortho': 36.82911782850093, 'eval_wer': 36.77685950413223, 'eval_runtime': 20.6213, 'eval_samples_per_second': 5.48, 'eval_steps_per_second': 0.388, 'epoch': 89.29}\n"
|
760 |
+
]
|
761 |
+
},
|
762 |
+
{
|
763 |
+
"name": "stderr",
|
764 |
+
"output_type": "stream",
|
765 |
+
"text": [
|
766 |
+
"/Users/mkhojira/Projects/mml/audio-course/venv/lib/python3.8/site-packages/torch/utils/checkpoint.py:429: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n",
|
767 |
+
" warnings.warn(\n"
|
768 |
+
]
|
769 |
+
},
|
770 |
+
{
|
771 |
+
"name": "stdout",
|
772 |
+
"output_type": "stream",
|
773 |
+
"text": [
|
774 |
+
"{'loss': 0.0, 'learning_rate': 1e-05, 'epoch': 90.18}\n",
|
775 |
+
"{'loss': 0.0, 'learning_rate': 1e-05, 'epoch': 91.07}\n",
|
776 |
+
"{'loss': 0.0, 'learning_rate': 1e-05, 'epoch': 91.96}\n",
|
777 |
+
"{'loss': 0.0, 'learning_rate': 1e-05, 'epoch': 92.86}\n",
|
778 |
+
"{'loss': 0.0, 'learning_rate': 1e-05, 'epoch': 93.75}\n",
|
779 |
+
"{'loss': 0.0, 'learning_rate': 1e-05, 'epoch': 94.64}\n",
|
780 |
+
"{'loss': 0.0, 'learning_rate': 1e-05, 'epoch': 95.54}\n",
|
781 |
+
"{'loss': 0.0, 'learning_rate': 1e-05, 'epoch': 96.43}\n",
|
782 |
+
"{'loss': 0.0, 'learning_rate': 1e-05, 'epoch': 97.32}\n",
|
783 |
+
"{'loss': 0.0, 'learning_rate': 1e-05, 'epoch': 98.21}\n",
|
784 |
+
"{'loss': 0.0, 'learning_rate': 1e-05, 'epoch': 99.11}\n",
|
785 |
+
"{'loss': 0.0, 'learning_rate': 1e-05, 'epoch': 100.0}\n",
|
786 |
+
"{'loss': 0.0, 'learning_rate': 1e-05, 'epoch': 100.89}\n",
|
787 |
+
"{'loss': 0.0, 'learning_rate': 1e-05, 'epoch': 101.79}\n",
|
788 |
+
"{'loss': 0.0, 'learning_rate': 1e-05, 'epoch': 102.68}\n",
|
789 |
+
"{'loss': 0.0, 'learning_rate': 1e-05, 'epoch': 103.57}\n",
|
790 |
+
"{'loss': 0.0, 'learning_rate': 1e-05, 'epoch': 104.46}\n",
|
791 |
+
"{'loss': 0.0, 'learning_rate': 1e-05, 'epoch': 105.36}\n",
|
792 |
+
"{'loss': 0.0, 'learning_rate': 1e-05, 'epoch': 106.25}\n",
|
793 |
+
"{'loss': 0.0, 'learning_rate': 1e-05, 'epoch': 107.14}\n"
|
794 |
+
]
|
795 |
+
},
|
796 |
+
{
|
797 |
+
"data": {
|
798 |
+
"application/vnd.jupyter.widget-view+json": {
|
799 |
+
"model_id": "b4c5b0d4040949408a37a90be1cc106b",
|
800 |
+
"version_major": 2,
|
801 |
+
"version_minor": 0
|
802 |
+
},
|
803 |
+
"text/plain": [
|
804 |
+
" 0%| | 0/8 [00:00<?, ?it/s]"
|
805 |
+
]
|
806 |
+
},
|
807 |
+
"metadata": {},
|
808 |
+
"output_type": "display_data"
|
809 |
+
},
|
810 |
+
{
|
811 |
+
"name": "stdout",
|
812 |
+
"output_type": "stream",
|
813 |
+
"text": [
|
814 |
+
"{'eval_loss': 0.3247106671333313, 'eval_wer_ortho': 36.705737199259715, 'eval_wer': 36.658795749704844, 'eval_runtime': 20.5021, 'eval_samples_per_second': 5.512, 'eval_steps_per_second': 0.39, 'epoch': 107.14}\n"
|
815 |
+
]
|
816 |
+
},
|
817 |
+
{
|
818 |
+
"name": "stderr",
|
819 |
+
"output_type": "stream",
|
820 |
+
"text": [
|
821 |
+
"/Users/mkhojira/Projects/mml/audio-course/venv/lib/python3.8/site-packages/torch/utils/checkpoint.py:429: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n",
|
822 |
+
" warnings.warn(\n"
|
823 |
+
]
|
824 |
+
},
|
825 |
+
{
|
826 |
+
"name": "stdout",
|
827 |
+
"output_type": "stream",
|
828 |
+
"text": [
|
829 |
+
"{'loss': 0.0, 'learning_rate': 1e-05, 'epoch': 108.04}\n",
|
830 |
+
"{'loss': 0.0, 'learning_rate': 1e-05, 'epoch': 108.93}\n",
|
831 |
+
"{'loss': 0.0, 'learning_rate': 1e-05, 'epoch': 109.82}\n",
|
832 |
+
"{'loss': 0.0, 'learning_rate': 1e-05, 'epoch': 110.71}\n",
|
833 |
+
"{'loss': 0.0, 'learning_rate': 1e-05, 'epoch': 111.61}\n",
|
834 |
+
"{'loss': 0.0, 'learning_rate': 1e-05, 'epoch': 112.5}\n",
|
835 |
+
"{'loss': 0.0, 'learning_rate': 1e-05, 'epoch': 113.39}\n",
|
836 |
+
"{'loss': 0.0, 'learning_rate': 1e-05, 'epoch': 114.29}\n",
|
837 |
+
"{'loss': 0.0, 'learning_rate': 1e-05, 'epoch': 115.18}\n",
|
838 |
+
"{'loss': 0.0, 'learning_rate': 1e-05, 'epoch': 116.07}\n",
|
839 |
+
"{'loss': 0.0, 'learning_rate': 1e-05, 'epoch': 116.96}\n",
|
840 |
+
"{'loss': 0.0, 'learning_rate': 1e-05, 'epoch': 117.86}\n",
|
841 |
+
"{'loss': 0.0, 'learning_rate': 1e-05, 'epoch': 118.75}\n",
|
842 |
+
"{'loss': 0.0, 'learning_rate': 1e-05, 'epoch': 119.64}\n"
|
843 |
+
]
|
844 |
+
},
|
845 |
+
{
|
846 |
+
"ename": "KeyboardInterrupt",
|
847 |
+
"evalue": "",
|
848 |
+
"output_type": "error",
|
849 |
+
"traceback": [
|
850 |
+
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
851 |
+
"\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)",
|
852 |
+
"\u001b[1;32m/Users/mkhojira/Projects/mml/audio-course/unit5/hands_on.ipynb Cell 22\u001b[0m line \u001b[0;36m1\n\u001b[0;32m----> <a href='vscode-notebook-cell:/Users/mkhojira/Projects/mml/audio-course/unit5/hands_on.ipynb#X34sZmlsZQ%3D%3D?line=0'>1</a>\u001b[0m trainer\u001b[39m.\u001b[39;49mtrain()\n",
|
853 |
+
"File \u001b[0;32m~/Projects/mml/audio-course/venv/lib/python3.8/site-packages/transformers/trainer.py:1555\u001b[0m, in \u001b[0;36mTrainer.train\u001b[0;34m(self, resume_from_checkpoint, trial, ignore_keys_for_eval, **kwargs)\u001b[0m\n\u001b[1;32m 1553\u001b[0m hf_hub_utils\u001b[39m.\u001b[39menable_progress_bars()\n\u001b[1;32m 1554\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[0;32m-> 1555\u001b[0m \u001b[39mreturn\u001b[39;00m inner_training_loop(\n\u001b[1;32m 1556\u001b[0m args\u001b[39m=\u001b[39;49margs,\n\u001b[1;32m 1557\u001b[0m resume_from_checkpoint\u001b[39m=\u001b[39;49mresume_from_checkpoint,\n\u001b[1;32m 1558\u001b[0m trial\u001b[39m=\u001b[39;49mtrial,\n\u001b[1;32m 1559\u001b[0m ignore_keys_for_eval\u001b[39m=\u001b[39;49mignore_keys_for_eval,\n\u001b[1;32m 1560\u001b[0m )\n",
|
854 |
+
"File \u001b[0;32m~/Projects/mml/audio-course/venv/lib/python3.8/site-packages/transformers/trainer.py:1862\u001b[0m, in \u001b[0;36mTrainer._inner_training_loop\u001b[0;34m(self, batch_size, args, resume_from_checkpoint, trial, ignore_keys_for_eval)\u001b[0m\n\u001b[1;32m 1859\u001b[0m \u001b[39mwith\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39maccelerator\u001b[39m.\u001b[39maccumulate(model):\n\u001b[1;32m 1860\u001b[0m tr_loss_step \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mtraining_step(model, inputs)\n\u001b[0;32m-> 1862\u001b[0m \u001b[39mif\u001b[39;00m (\n\u001b[1;32m 1863\u001b[0m args\u001b[39m.\u001b[39mlogging_nan_inf_filter\n\u001b[1;32m 1864\u001b[0m \u001b[39mand\u001b[39;00m \u001b[39mnot\u001b[39;00m is_torch_tpu_available()\n\u001b[1;32m 1865\u001b[0m \u001b[39mand\u001b[39;00m (torch\u001b[39m.\u001b[39misnan(tr_loss_step) \u001b[39mor\u001b[39;00m torch\u001b[39m.\u001b[39misinf(tr_loss_step))\n\u001b[1;32m 1866\u001b[0m ):\n\u001b[1;32m 1867\u001b[0m \u001b[39m# if loss is nan or inf simply add the average of previous logged losses\u001b[39;00m\n\u001b[1;32m 1868\u001b[0m tr_loss \u001b[39m+\u001b[39m\u001b[39m=\u001b[39m tr_loss \u001b[39m/\u001b[39m (\u001b[39m1\u001b[39m \u001b[39m+\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mstate\u001b[39m.\u001b[39mglobal_step \u001b[39m-\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_globalstep_last_logged)\n\u001b[1;32m 1869\u001b[0m \u001b[39melse\u001b[39;00m:\n",
|
855 |
+
"\u001b[0;31mKeyboardInterrupt\u001b[0m: "
|
856 |
+
]
|
857 |
+
}
|
858 |
+
],
|
859 |
+
"source": [
|
860 |
+
"trainer.train()"
|
861 |
+
]
|
862 |
+
},
|
863 |
+
{
|
864 |
+
"cell_type": "code",
|
865 |
+
"execution_count": null,
|
866 |
+
"metadata": {},
|
867 |
+
"outputs": [],
|
868 |
+
"source": [
|
869 |
+
"# from transformers import GenerationConfig\n",
|
870 |
+
"# generation_config = GenerationConfig.from_pretrained(\"openai/whisper-tiny.en\")\n",
|
871 |
+
"# generation_config.push_to_hub('mirodil/whisper-tiny-en-us-minds14')"
|
872 |
+
]
|
873 |
+
},
|
874 |
+
{
|
875 |
+
"cell_type": "code",
|
876 |
+
"execution_count": 21,
|
877 |
+
"metadata": {},
|
878 |
+
"outputs": [
|
879 |
+
{
|
880 |
+
"data": {
|
881 |
+
"application/vnd.jupyter.widget-view+json": {
|
882 |
+
"model_id": "5cb7500ba08c4c98b821669c3207517d",
|
883 |
+
"version_major": 2,
|
884 |
+
"version_minor": 0
|
885 |
+
},
|
886 |
+
"text/plain": [
|
887 |
+
"events.out.tfevents.1700719599.L67DDV9G7R.91939.0: 0%| | 0.00/29.3k [00:00<?, ?B/s]"
|
888 |
+
]
|
889 |
+
},
|
890 |
+
"metadata": {},
|
891 |
+
"output_type": "display_data"
|
892 |
+
},
|
893 |
+
{
|
894 |
+
"data": {
|
895 |
+
"application/vnd.jupyter.widget-view+json": {
|
896 |
+
"model_id": "26bce367c9974964a5e06097af5959e8",
|
897 |
+
"version_major": 2,
|
898 |
+
"version_minor": 0
|
899 |
+
},
|
900 |
+
"text/plain": [
|
901 |
+
"model.safetensors: 0%| | 0.00/151M [00:00<?, ?B/s]"
|
902 |
+
]
|
903 |
+
},
|
904 |
+
"metadata": {},
|
905 |
+
"output_type": "display_data"
|
906 |
+
},
|
907 |
+
{
|
908 |
+
"data": {
|
909 |
+
"application/vnd.jupyter.widget-view+json": {
|
910 |
+
"model_id": "d947a721dfcc44cab504adee4a2cab9f",
|
911 |
+
"version_major": 2,
|
912 |
+
"version_minor": 0
|
913 |
+
},
|
914 |
+
"text/plain": [
|
915 |
+
"training_args.bin: 0%| | 0.00/4.73k [00:00<?, ?B/s]"
|
916 |
+
]
|
917 |
+
},
|
918 |
+
"metadata": {},
|
919 |
+
"output_type": "display_data"
|
920 |
+
},
|
921 |
+
{
|
922 |
+
"data": {
|
923 |
+
"application/vnd.jupyter.widget-view+json": {
|
924 |
+
"model_id": "c4487700a97e42188f5bf27cf538c82d",
|
925 |
+
"version_major": 2,
|
926 |
+
"version_minor": 0
|
927 |
+
},
|
928 |
+
"text/plain": [
|
929 |
+
"Upload 3 LFS files: 0%| | 0/3 [00:00<?, ?it/s]"
|
930 |
+
]
|
931 |
+
},
|
932 |
+
"metadata": {},
|
933 |
+
"output_type": "display_data"
|
934 |
+
},
|
935 |
+
{
|
936 |
+
"data": {
|
937 |
+
"text/plain": [
|
938 |
+
"'https://huggingface.co/mirodil/whisper-tiny-en-us-minds14/tree/main/'"
|
939 |
+
]
|
940 |
+
},
|
941 |
+
"execution_count": 21,
|
942 |
+
"metadata": {},
|
943 |
+
"output_type": "execute_result"
|
944 |
+
}
|
945 |
+
],
|
946 |
+
"source": [
|
947 |
+
"kwargs = {\n",
|
948 |
+
" \"dataset_tags\": \"PolyAI/minds14\",\n",
|
949 |
+
" \"finetuned_from\": \"openai/whisper-tiny\",\n",
|
950 |
+
" \"tasks\": \"automatic-speech-recognition\",\n",
|
951 |
+
"}\n",
|
952 |
+
"trainer.push_to_hub(**kwargs)"
|
953 |
+
]
|
954 |
+
},
|
955 |
+
{
|
956 |
+
"cell_type": "code",
|
957 |
+
"execution_count": null,
|
958 |
+
"metadata": {},
|
959 |
+
"outputs": [],
|
960 |
+
"source": [
|
961 |
+
"model.generation_config"
|
962 |
+
]
|
963 |
+
},
|
964 |
+
{
|
965 |
+
"cell_type": "code",
|
966 |
+
"execution_count": null,
|
967 |
+
"metadata": {},
|
968 |
+
"outputs": [],
|
969 |
+
"source": [
|
970 |
+
"hasattr(generation_config, \"lang_to_id\")"
|
971 |
+
]
|
972 |
+
},
|
973 |
+
{
|
974 |
+
"cell_type": "code",
|
975 |
+
"execution_count": null,
|
976 |
+
"metadata": {},
|
977 |
+
"outputs": [],
|
978 |
+
"source": []
|
979 |
+
}
|
980 |
+
],
|
981 |
+
"metadata": {
|
982 |
+
"kernelspec": {
|
983 |
+
"display_name": "venv",
|
984 |
+
"language": "python",
|
985 |
+
"name": "python3"
|
986 |
+
},
|
987 |
+
"language_info": {
|
988 |
+
"codemirror_mode": {
|
989 |
+
"name": "ipython",
|
990 |
+
"version": 3
|
991 |
+
},
|
992 |
+
"file_extension": ".py",
|
993 |
+
"mimetype": "text/x-python",
|
994 |
+
"name": "python",
|
995 |
+
"nbconvert_exporter": "python",
|
996 |
+
"pygments_lexer": "ipython3",
|
997 |
+
"version": "3.8.17"
|
998 |
+
}
|
999 |
+
},
|
1000 |
+
"nbformat": 4,
|
1001 |
+
"nbformat_minor": 2
|
1002 |
+
}
|