Push LunarLander-v2 model
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 259.37 +/- 19.80
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0995ab5790>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0995ab5820>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0995ab58b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0995ab5940>", "_build": "<function ActorCriticPolicy._build at 0x7f0995ab59d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f0995ab5a60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0995ab5af0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f0995ab5b80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0995ab5c10>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0995ab5ca0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0995ab5d30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f0995aaafc0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670908315601182548, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM19qb3DcW+6UB6aO6qPizgVKf05t7MtuQAAAAAAAIA/QEgYvsMPyT7rGXk+gvC1vgYJ9jx7Tuc8AAAAAAAAAACa5lo9bJutu2oR3bsuS5I8vAsEPUAzeL0AAIA/AACAP/PVWT5pjao+s1PEvrVajL4Cyow8mFWUvQAAAAAAAAAAmk8AvFwnXbpDHVQz08arL+JjHjv2c9CzAACAPwAAgD9msA88FSRLPncNF775tTK+8Zm3veCKwzsAAAAAAAAAALNJuT2FE7O5qqBVM+ae5y/u0ZS7i8zQswAAgD8AAIA/mjq+Pa41hLq23ZE6n0mJNcWVabfKHaq5AACAPwAAgD9AmNO96HuQPQ5VAD4ifz68Spi6PRxIirwAAAAAAAAAALP6dL17/o+6i9SquFEw57Mm7QI6l9PENwAAgD8AAIA/ei8Pvn74FT+WHyO9I4TuvljIt72du7E9AAAAAAAAAAAADHA8UcvYPgxQAb7Cw6O+WoQ1u5YF7b0AAAAAAAAAAE3KTb3H9ws+RuX8PiM/xr7XfJ4+UXozPQAAAAAAAAAAwNnEvQrLZruCS7y7w4KIPDFzojy1wGq9AACAPwAAgD+aCww9jy5aun/7KzTCrIkvQ+XUOVvDk7MAAIA/AACAP+0hFL6VlZE+MunjPf5Dob6FFIm8aAdpPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBTQRNvwockCUhpRSlIwBbJRNFwGMAXSUR0Cdz+vGIbfhdX2UKGgGaAloD0MICJEMOfYfcUCUhpRSlGgVS+9oFkdAndAHbItDlnV9lChoBmgJaA9DCHkB9tFpCXJAlIaUUpRoFUvdaBZHQJ3QLFYMfA91fZQoaAZoCWgPQwhYrUz4ZdJyQJSGlFKUaBVL7WgWR0Cd0RZvUBn0dX2UKGgGaAloD0MIkloomRzgYECUhpRSlGgVTegDaBZHQJ3RNvVEuxt1fZQoaAZoCWgPQwjXbOUlf2twQJSGlFKUaBVLvmgWR0Cd0c94/u9fdX2UKGgGaAloD0MIaTum7oqOcUCUhpRSlGgVS+doFkdAndIR6F/QSnV9lChoBmgJaA9DCJt1xveFj3BAlIaUUpRoFUveaBZHQJ3SYHkcS5B1fZQoaAZoCWgPQwhUHXIznFdyQJSGlFKUaBVNJwFoFkdAndP3UUfxMHV9lChoBmgJaA9DCH3p7c/FnXJAlIaUUpRoFU1FAWgWR0Cd1CkJKJ2udX2UKGgGaAloD0MIogvqWyZvcUCUhpRSlGgVS+xoFkdAndUIq0+kg3V9lChoBmgJaA9DCIEk7NsJK3BAlIaUUpRoFUvraBZHQJ3VYaqCHyp1fZQoaAZoCWgPQwiBP/z896ZwQJSGlFKUaBVL/WgWR0Cd1rWaMJhOdX2UKGgGaAloD0MIfepYpfT8ckCUhpRSlGgVS+9oFkdAndc+HzpX63V9lChoBmgJaA9DCLu3IjHBW3FAlIaUUpRoFUvuaBZHQJ3YW0kWykd1fZQoaAZoCWgPQwgXuaerO7BwQJSGlFKUaBVL9WgWR0Cd2H0v4/NadX2UKGgGaAloD0MI1H5rJ0ooUkCUhpRSlGgVS5poFkdAndjPmDDjznV9lChoBmgJaA9DCOmBj8HKpnBAlIaUUpRoFUv9aBZHQJ3ZmyB06o51fZQoaAZoCWgPQwgx0LUvILVwQJSGlFKUaBVL9GgWR0Cd2f/r0J4TdX2UKGgGaAloD0MIsrlqniPjbkCUhpRSlGgVTQkBaBZHQJ3aVLbpNbl1fZQoaAZoCWgPQwjwbfqznyBzQJSGlFKUaBVNaAFoFkdAndrw/TsponV9lChoBmgJaA9DCN16TQ9K8XJAlIaUUpRoFUv1aBZHQJ3b6cqe9SN1fZQoaAZoCWgPQwjqBZ/m5HlcQJSGlFKUaBVN6ANoFkdAndwf1UVBU3V9lChoBmgJaA9DCGzOwTNhOHRAlIaUUpRoFUvsaBZHQJ3cedK/VRV1fZQoaAZoCWgPQwg2BTI7iyRzQJSGlFKUaBVL42gWR0Cd3bevpyIYdX2UKGgGaAloD0MIvvkNE43Fc0CUhpRSlGgVS7toFkdAnd5kfDDTB3V9lChoBmgJaA9DCGnHDb8bJHNAlIaUUpRoFUvyaBZHQJ3epUvPC2t1fZQoaAZoCWgPQwh6cHfWLoxxQJSGlFKUaBVNRQFoFkdAnd9KC+UQkHV9lChoBmgJaA9DCGSV0jN983BAlIaUUpRoFUvEaBZHQJ3fUeGO+7F1fZQoaAZoCWgPQwiXH7jKEzBxQJSGlFKUaBVL5WgWR0Cd31ANG3F2dX2UKGgGaAloD0MIHVn5ZXD5cUCUhpRSlGgVTQ4BaBZHQJ3gQJBw++x1fZQoaAZoCWgPQwgErcCQVedvQJSGlFKUaBVLyGgWR0Cd4JauOjqOdX2UKGgGaAloD0MIyhmKO16ScUCUhpRSlGgVS/loFkdAneFeJUHY6HV9lChoBmgJaA9DCEFmZ9G7S3FAlIaUUpRoFU0GAWgWR0Cd4XuiN83NdX2UKGgGaAloD0MIH/KWq58WcECUhpRSlGgVS+RoFkdAneJw4wRGt3V9lChoBmgJaA9DCPXVVYHaYG9AlIaUUpRoFUvtaBZHQJ3jF84Pwux1fZQoaAZoCWgPQwhorz4eOj9wQJSGlFKUaBVNjgJoFkdAneNOsPrfL3V9lChoBmgJaA9DCBmO5zOgJlBAlIaUUpRoFUt2aBZHQJ3j14Oc2BJ1fZQoaAZoCWgPQwiFXRQ98HZtQJSGlFKUaBVNjANoFkdAneQPcafjCHV9lChoBmgJaA9DCBFWYwlrYHNAlIaUUpRoFUv0aBZHQJ33lGNJe3R1fZQoaAZoCWgPQwjsF+yGbTlzQJSGlFKUaBVLvGgWR0Cd95NATqSpdX2UKGgGaAloD0MIXI5XIPqzckCUhpRSlGgVTQgBaBZHQJ34z6ZYxL11fZQoaAZoCWgPQwjij6LO3HRyQJSGlFKUaBVNBQFoFkdAnflkgbIcR3V9lChoBmgJaA9DCKhy2lPyuXFAlIaUUpRoFU0lAWgWR0Cd+WQ/X5FgdX2UKGgGaAloD0MIG4LjMi56cUCUhpRSlGgVS/loFkdAnfoOhK15SnV9lChoBmgJaA9DCM07TtGRN3BAlIaUUpRoFUvoaBZHQJ36s+t8uz11fZQoaAZoCWgPQwi+ZrlsNJ9yQJSGlFKUaBVLzmgWR0Cd+9dUKiPAdX2UKGgGaAloD0MITI3Qz5RzcECUhpRSlGgVTRYBaBZHQJ377tG/etV1fZQoaAZoCWgPQwgj88gfjO9yQJSGlFKUaBVL/mgWR0Cd/FnsLORldX2UKGgGaAloD0MI9+eiIePlXUCUhpRSlGgVTegDaBZHQJ38dwiqyW11fZQoaAZoCWgPQwjSNv5EZS1pQJSGlFKUaBVN8wFoFkdAnfydP557gXV9lChoBmgJaA9DCPQ3oRCBOXFAlIaUUpRoFUvhaBZHQJ386xVyWAx1fZQoaAZoCWgPQwig3SHFQI5xQJSGlFKUaBVL+GgWR0Cd/cLLpzLfdX2UKGgGaAloD0MIIzFBDZ9hcUCUhpRSlGgVS/NoFkdAnf4Viay8jHV9lChoBmgJaA9DCDGyZI6lGnFAlIaUUpRoFU08AWgWR0Cd/qKpT/ACdX2UKGgGaAloD0MIFVJ+Um3gcECUhpRSlGgVS9RoFkdAnf6gSnLq2XV9lChoBmgJaA9DCNwODYtRy3BAlIaUUpRoFUviaBZHQJ3/eXt0FKV1fZQoaAZoCWgPQwhEvkupizxyQJSGlFKUaBVL+WgWR0CeAA+r2g3+dX2UKGgGaAloD0MI9wX0wl2qcECUhpRSlGgVS9VoFkdAngBjFyaNM3V9lChoBmgJaA9DCPX1fM3yinFAlIaUUpRoFU1eAWgWR0CeAL/p+tr9dX2UKGgGaAloD0MID0Ork7O1cECUhpRSlGgVS79oFkdAngDizw+dLHV9lChoBmgJaA9DCISCUrQyIXBAlIaUUpRoFUvSaBZHQJ4BRUvPC2t1fZQoaAZoCWgPQwjZPuQtV9FyQJSGlFKUaBVNFQFoFkdAngFc2vStvHV9lChoBmgJaA9DCP1LUplignBAlIaUUpRoFUvfaBZHQJ4CRdt2s7x1fZQoaAZoCWgPQwhYkGYsGilwQJSGlFKUaBVL8mgWR0CeAoin5zo2dX2UKGgGaAloD0MI9YHknUMpcECUhpRSlGgVS+FoFkdAngKlfJFLFnV9lChoBmgJaA9DCNI1k2926XBAlIaUUpRoFU0GAWgWR0CeAxZuyeI3dX2UKGgGaAloD0MId4apLfXkbkCUhpRSlGgVS9VoFkdAngPhiTdLx3V9lChoBmgJaA9DCM5sV+hDgHJAlIaUUpRoFUvxaBZHQJ4EDHDJlrd1fZQoaAZoCWgPQwic/BadbIZwQJSGlFKUaBVL62gWR0CeBGpo9LYgdX2UKGgGaAloD0MILqwb747cckCUhpRSlGgVTRkBaBZHQJ4ExEx7AtZ1fZQoaAZoCWgPQwgc6+I2muhyQJSGlFKUaBVL3WgWR0CeBXwNb1RMdX2UKGgGaAloD0MIQ46tZ0iPcUCUhpRSlGgVS8BoFkdAngWcAzYVZnV9lChoBmgJaA9DCOllFMstbHBAlIaUUpRoFUvxaBZHQJ4GWudPLxJ1fZQoaAZoCWgPQwi2vHK9bQJwQJSGlFKUaBVNGQFoFkdAngZ2SZBsynV9lChoBmgJaA9DCDarPldb2HBAlIaUUpRoFUvXaBZHQJ4GoBvJiiJ1fZQoaAZoCWgPQwg7Un3n1/xxQJSGlFKUaBVL3GgWR0CeBtHO8kD7dX2UKGgGaAloD0MIWkV/aGbdcECUhpRSlGgVS8NoFkdAngdimIj4YnV9lChoBmgJaA9DCMr5Yu9FanBAlIaUUpRoFU0XAWgWR0CeB5ML4N7TdX2UKGgGaAloD0MIsW1RZsMMc0CUhpRSlGgVS+BoFkdAnge4dhiLEXV9lChoBmgJaA9DCHdNSGsMWHFAlIaUUpRoFUvjaBZHQJ4IAka/ATJ1fZQoaAZoCWgPQwg89x4uOZFxQJSGlFKUaBVL3mgWR0CeCGwtapxWdX2UKGgGaAloD0MIVoDvNm8ocECUhpRSlGgVS91oFkdAnglVSXMQmXV9lChoBmgJaA9DCPm7d9TYnnFAlIaUUpRoFUv0aBZHQJ4Jvlgc94h1fZQoaAZoCWgPQwi8V61M+KpvQJSGlFKUaBVL5GgWR0CeCeLFXJYDdX2UKGgGaAloD0MIKII4D6escUCUhpRSlGgVS/ZoFkdAngreKoAGS3V9lChoBmgJaA9DCGFsIchBmHBAlIaUUpRoFUv3aBZHQJ4L8eJYT0x1fZQoaAZoCWgPQwjw2xDjNfRyQJSGlFKUaBVNCgFoFkdAngxdNJvo/3V9lChoBmgJaA9DCGeasP1keldAlIaUUpRoFU3oA2gWR0CeDG0vXbuddX2UKGgGaAloD0MIukvirIjecECUhpRSlGgVS+loFkdAngx77bcoIHV9lChoBmgJaA9DCPvqqkAt+W9AlIaUUpRoFUvnaBZHQJ4MyWC2+f11fZQoaAZoCWgPQwiD9urjoYVwQJSGlFKUaBVNAwFoFkdAng0C97F85XV9lChoBmgJaA9DCD25pkDmmHJAlIaUUpRoFUvkaBZHQJ4NVjAi3Xt1fZQoaAZoCWgPQwiE8GjjSIlxQJSGlFKUaBVNHQFoFkdAng3aBiCrcXV9lChoBmgJaA9DCE34pX4ei3JAlIaUUpRoFUv8aBZHQJ4OijJuEVZ1fZQoaAZoCWgPQwgW9rTDX8RwQJSGlFKUaBVLw2gWR0CeDopYLb5/dX2UKGgGaAloD0MI7xr0pbeLcUCUhpRSlGgVTQkBaBZHQJ4OjKU3XI51fZQoaAZoCWgPQwiPjquRnUhwQJSGlFKUaBVL7GgWR0CeDpwob4rSdX2UKGgGaAloD0MIMZi/QiZsckCUhpRSlGgVTR8BaBZHQJ4O2wxFiKB1fZQoaAZoCWgPQwjK4Ch5NSlxQJSGlFKUaBVL22gWR0CeD3rBj4HpdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5b5bd80f0eb40d22dd181465872d23b05477e236737923f95ca797fc63673391
|
3 |
+
size 147126
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f0995ab5790>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0995ab5820>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0995ab58b0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0995ab5940>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f0995ab59d0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f0995ab5a60>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0995ab5af0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f0995ab5b80>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0995ab5c10>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0995ab5ca0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0995ab5d30>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f0995aaafc0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1015808,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1670908315601182548,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM19qb3DcW+6UB6aO6qPizgVKf05t7MtuQAAAAAAAIA/QEgYvsMPyT7rGXk+gvC1vgYJ9jx7Tuc8AAAAAAAAAACa5lo9bJutu2oR3bsuS5I8vAsEPUAzeL0AAIA/AACAP/PVWT5pjao+s1PEvrVajL4Cyow8mFWUvQAAAAAAAAAAmk8AvFwnXbpDHVQz08arL+JjHjv2c9CzAACAPwAAgD9msA88FSRLPncNF775tTK+8Zm3veCKwzsAAAAAAAAAALNJuT2FE7O5qqBVM+ae5y/u0ZS7i8zQswAAgD8AAIA/mjq+Pa41hLq23ZE6n0mJNcWVabfKHaq5AACAPwAAgD9AmNO96HuQPQ5VAD4ifz68Spi6PRxIirwAAAAAAAAAALP6dL17/o+6i9SquFEw57Mm7QI6l9PENwAAgD8AAIA/ei8Pvn74FT+WHyO9I4TuvljIt72du7E9AAAAAAAAAAAADHA8UcvYPgxQAb7Cw6O+WoQ1u5YF7b0AAAAAAAAAAE3KTb3H9ws+RuX8PiM/xr7XfJ4+UXozPQAAAAAAAAAAwNnEvQrLZruCS7y7w4KIPDFzojy1wGq9AACAPwAAgD+aCww9jy5aun/7KzTCrIkvQ+XUOVvDk7MAAIA/AACAP+0hFL6VlZE+MunjPf5Dob6FFIm8aAdpPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVPBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBTQRNvwockCUhpRSlIwBbJRNFwGMAXSUR0Cdz+vGIbfhdX2UKGgGaAloD0MICJEMOfYfcUCUhpRSlGgVS+9oFkdAndAHbItDlnV9lChoBmgJaA9DCHkB9tFpCXJAlIaUUpRoFUvdaBZHQJ3QLFYMfA91fZQoaAZoCWgPQwhYrUz4ZdJyQJSGlFKUaBVL7WgWR0Cd0RZvUBn0dX2UKGgGaAloD0MIkloomRzgYECUhpRSlGgVTegDaBZHQJ3RNvVEuxt1fZQoaAZoCWgPQwjXbOUlf2twQJSGlFKUaBVLvmgWR0Cd0c94/u9fdX2UKGgGaAloD0MIaTum7oqOcUCUhpRSlGgVS+doFkdAndIR6F/QSnV9lChoBmgJaA9DCJt1xveFj3BAlIaUUpRoFUveaBZHQJ3SYHkcS5B1fZQoaAZoCWgPQwhUHXIznFdyQJSGlFKUaBVNJwFoFkdAndP3UUfxMHV9lChoBmgJaA9DCH3p7c/FnXJAlIaUUpRoFU1FAWgWR0Cd1CkJKJ2udX2UKGgGaAloD0MIogvqWyZvcUCUhpRSlGgVS+xoFkdAndUIq0+kg3V9lChoBmgJaA9DCIEk7NsJK3BAlIaUUpRoFUvraBZHQJ3VYaqCHyp1fZQoaAZoCWgPQwiBP/z896ZwQJSGlFKUaBVL/WgWR0Cd1rWaMJhOdX2UKGgGaAloD0MIfepYpfT8ckCUhpRSlGgVS+9oFkdAndc+HzpX63V9lChoBmgJaA9DCLu3IjHBW3FAlIaUUpRoFUvuaBZHQJ3YW0kWykd1fZQoaAZoCWgPQwgXuaerO7BwQJSGlFKUaBVL9WgWR0Cd2H0v4/NadX2UKGgGaAloD0MI1H5rJ0ooUkCUhpRSlGgVS5poFkdAndjPmDDjznV9lChoBmgJaA9DCOmBj8HKpnBAlIaUUpRoFUv9aBZHQJ3ZmyB06o51fZQoaAZoCWgPQwgx0LUvILVwQJSGlFKUaBVL9GgWR0Cd2f/r0J4TdX2UKGgGaAloD0MIsrlqniPjbkCUhpRSlGgVTQkBaBZHQJ3aVLbpNbl1fZQoaAZoCWgPQwjwbfqznyBzQJSGlFKUaBVNaAFoFkdAndrw/TsponV9lChoBmgJaA9DCN16TQ9K8XJAlIaUUpRoFUv1aBZHQJ3b6cqe9SN1fZQoaAZoCWgPQwjqBZ/m5HlcQJSGlFKUaBVN6ANoFkdAndwf1UVBU3V9lChoBmgJaA9DCGzOwTNhOHRAlIaUUpRoFUvsaBZHQJ3cedK/VRV1fZQoaAZoCWgPQwg2BTI7iyRzQJSGlFKUaBVL42gWR0Cd3bevpyIYdX2UKGgGaAloD0MIvvkNE43Fc0CUhpRSlGgVS7toFkdAnd5kfDDTB3V9lChoBmgJaA9DCGnHDb8bJHNAlIaUUpRoFUvyaBZHQJ3epUvPC2t1fZQoaAZoCWgPQwh6cHfWLoxxQJSGlFKUaBVNRQFoFkdAnd9KC+UQkHV9lChoBmgJaA9DCGSV0jN983BAlIaUUpRoFUvEaBZHQJ3fUeGO+7F1fZQoaAZoCWgPQwiXH7jKEzBxQJSGlFKUaBVL5WgWR0Cd31ANG3F2dX2UKGgGaAloD0MIHVn5ZXD5cUCUhpRSlGgVTQ4BaBZHQJ3gQJBw++x1fZQoaAZoCWgPQwgErcCQVedvQJSGlFKUaBVLyGgWR0Cd4JauOjqOdX2UKGgGaAloD0MIyhmKO16ScUCUhpRSlGgVS/loFkdAneFeJUHY6HV9lChoBmgJaA9DCEFmZ9G7S3FAlIaUUpRoFU0GAWgWR0Cd4XuiN83NdX2UKGgGaAloD0MIH/KWq58WcECUhpRSlGgVS+RoFkdAneJw4wRGt3V9lChoBmgJaA9DCPXVVYHaYG9AlIaUUpRoFUvtaBZHQJ3jF84Pwux1fZQoaAZoCWgPQwhorz4eOj9wQJSGlFKUaBVNjgJoFkdAneNOsPrfL3V9lChoBmgJaA9DCBmO5zOgJlBAlIaUUpRoFUt2aBZHQJ3j14Oc2BJ1fZQoaAZoCWgPQwiFXRQ98HZtQJSGlFKUaBVNjANoFkdAneQPcafjCHV9lChoBmgJaA9DCBFWYwlrYHNAlIaUUpRoFUv0aBZHQJ33lGNJe3R1fZQoaAZoCWgPQwjsF+yGbTlzQJSGlFKUaBVLvGgWR0Cd95NATqSpdX2UKGgGaAloD0MIXI5XIPqzckCUhpRSlGgVTQgBaBZHQJ34z6ZYxL11fZQoaAZoCWgPQwjij6LO3HRyQJSGlFKUaBVNBQFoFkdAnflkgbIcR3V9lChoBmgJaA9DCKhy2lPyuXFAlIaUUpRoFU0lAWgWR0Cd+WQ/X5FgdX2UKGgGaAloD0MIG4LjMi56cUCUhpRSlGgVS/loFkdAnfoOhK15SnV9lChoBmgJaA9DCM07TtGRN3BAlIaUUpRoFUvoaBZHQJ36s+t8uz11fZQoaAZoCWgPQwi+ZrlsNJ9yQJSGlFKUaBVLzmgWR0Cd+9dUKiPAdX2UKGgGaAloD0MITI3Qz5RzcECUhpRSlGgVTRYBaBZHQJ377tG/etV1fZQoaAZoCWgPQwgj88gfjO9yQJSGlFKUaBVL/mgWR0Cd/FnsLORldX2UKGgGaAloD0MI9+eiIePlXUCUhpRSlGgVTegDaBZHQJ38dwiqyW11fZQoaAZoCWgPQwjSNv5EZS1pQJSGlFKUaBVN8wFoFkdAnfydP557gXV9lChoBmgJaA9DCPQ3oRCBOXFAlIaUUpRoFUvhaBZHQJ386xVyWAx1fZQoaAZoCWgPQwig3SHFQI5xQJSGlFKUaBVL+GgWR0Cd/cLLpzLfdX2UKGgGaAloD0MIIzFBDZ9hcUCUhpRSlGgVS/NoFkdAnf4Viay8jHV9lChoBmgJaA9DCDGyZI6lGnFAlIaUUpRoFU08AWgWR0Cd/qKpT/ACdX2UKGgGaAloD0MIFVJ+Um3gcECUhpRSlGgVS9RoFkdAnf6gSnLq2XV9lChoBmgJaA9DCNwODYtRy3BAlIaUUpRoFUviaBZHQJ3/eXt0FKV1fZQoaAZoCWgPQwhEvkupizxyQJSGlFKUaBVL+WgWR0CeAA+r2g3+dX2UKGgGaAloD0MI9wX0wl2qcECUhpRSlGgVS9VoFkdAngBjFyaNM3V9lChoBmgJaA9DCPX1fM3yinFAlIaUUpRoFU1eAWgWR0CeAL/p+tr9dX2UKGgGaAloD0MID0Ork7O1cECUhpRSlGgVS79oFkdAngDizw+dLHV9lChoBmgJaA9DCISCUrQyIXBAlIaUUpRoFUvSaBZHQJ4BRUvPC2t1fZQoaAZoCWgPQwjZPuQtV9FyQJSGlFKUaBVNFQFoFkdAngFc2vStvHV9lChoBmgJaA9DCP1LUplignBAlIaUUpRoFUvfaBZHQJ4CRdt2s7x1fZQoaAZoCWgPQwhYkGYsGilwQJSGlFKUaBVL8mgWR0CeAoin5zo2dX2UKGgGaAloD0MI9YHknUMpcECUhpRSlGgVS+FoFkdAngKlfJFLFnV9lChoBmgJaA9DCNI1k2926XBAlIaUUpRoFU0GAWgWR0CeAxZuyeI3dX2UKGgGaAloD0MId4apLfXkbkCUhpRSlGgVS9VoFkdAngPhiTdLx3V9lChoBmgJaA9DCM5sV+hDgHJAlIaUUpRoFUvxaBZHQJ4EDHDJlrd1fZQoaAZoCWgPQwic/BadbIZwQJSGlFKUaBVL62gWR0CeBGpo9LYgdX2UKGgGaAloD0MILqwb747cckCUhpRSlGgVTRkBaBZHQJ4ExEx7AtZ1fZQoaAZoCWgPQwgc6+I2muhyQJSGlFKUaBVL3WgWR0CeBXwNb1RMdX2UKGgGaAloD0MIQ46tZ0iPcUCUhpRSlGgVS8BoFkdAngWcAzYVZnV9lChoBmgJaA9DCOllFMstbHBAlIaUUpRoFUvxaBZHQJ4GWudPLxJ1fZQoaAZoCWgPQwi2vHK9bQJwQJSGlFKUaBVNGQFoFkdAngZ2SZBsynV9lChoBmgJaA9DCDarPldb2HBAlIaUUpRoFUvXaBZHQJ4GoBvJiiJ1fZQoaAZoCWgPQwg7Un3n1/xxQJSGlFKUaBVL3GgWR0CeBtHO8kD7dX2UKGgGaAloD0MIWkV/aGbdcECUhpRSlGgVS8NoFkdAngdimIj4YnV9lChoBmgJaA9DCMr5Yu9FanBAlIaUUpRoFU0XAWgWR0CeB5ML4N7TdX2UKGgGaAloD0MIsW1RZsMMc0CUhpRSlGgVS+BoFkdAnge4dhiLEXV9lChoBmgJaA9DCHdNSGsMWHFAlIaUUpRoFUvjaBZHQJ4IAka/ATJ1fZQoaAZoCWgPQwg89x4uOZFxQJSGlFKUaBVL3mgWR0CeCGwtapxWdX2UKGgGaAloD0MIVoDvNm8ocECUhpRSlGgVS91oFkdAnglVSXMQmXV9lChoBmgJaA9DCPm7d9TYnnFAlIaUUpRoFUv0aBZHQJ4Jvlgc94h1fZQoaAZoCWgPQwi8V61M+KpvQJSGlFKUaBVL5GgWR0CeCeLFXJYDdX2UKGgGaAloD0MIKII4D6escUCUhpRSlGgVS/ZoFkdAngreKoAGS3V9lChoBmgJaA9DCGFsIchBmHBAlIaUUpRoFUv3aBZHQJ4L8eJYT0x1fZQoaAZoCWgPQwjw2xDjNfRyQJSGlFKUaBVNCgFoFkdAngxdNJvo/3V9lChoBmgJaA9DCGeasP1keldAlIaUUpRoFU3oA2gWR0CeDG0vXbuddX2UKGgGaAloD0MIukvirIjecECUhpRSlGgVS+loFkdAngx77bcoIHV9lChoBmgJaA9DCPvqqkAt+W9AlIaUUpRoFUvnaBZHQJ4MyWC2+f11fZQoaAZoCWgPQwiD9urjoYVwQJSGlFKUaBVNAwFoFkdAng0C97F85XV9lChoBmgJaA9DCD25pkDmmHJAlIaUUpRoFUvkaBZHQJ4NVjAi3Xt1fZQoaAZoCWgPQwiE8GjjSIlxQJSGlFKUaBVNHQFoFkdAng3aBiCrcXV9lChoBmgJaA9DCE34pX4ei3JAlIaUUpRoFUv8aBZHQJ4OijJuEVZ1fZQoaAZoCWgPQwgW9rTDX8RwQJSGlFKUaBVLw2gWR0CeDopYLb5/dX2UKGgGaAloD0MI7xr0pbeLcUCUhpRSlGgVTQkBaBZHQJ4OjKU3XI51fZQoaAZoCWgPQwiPjquRnUhwQJSGlFKUaBVL7GgWR0CeDpwob4rSdX2UKGgGaAloD0MIMZi/QiZsckCUhpRSlGgVTR8BaBZHQJ4O2wxFiKB1fZQoaAZoCWgPQwjK4Ch5NSlxQJSGlFKUaBVL22gWR0CeD3rBj4HpdWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 248,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:19d2ccb2a949f198d4f6c875e521af836f432281cc969edaee31429b5ade48bd
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c5645976f1810da2cc9cb63eb5defbbbae664043eefad8cf99d97f9953f97e25
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.8.16
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.13.0+cu116
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (214 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 259.37241869335116, "std_reward": 19.800828045975315, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-13T05:50:46.407146"}
|