
(a) HigherHRNet, base channel = 16 (b) Shrink1, -29% blocks, base channel = 16

(d) Shrink3, -33% blocks, base channel = 18(c) Shrink2, -30% blocks, base channel = 18
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Lite Pose: Efficient Architecture Design 2D for Human Pose Estimation 

Real-Time Multi-Person Pose Estimation 
on Edge 

Overview of LitePose

Yihan Wang1,   Muyang Li2,   Han Cai3,   Wei-Ming Chen3,   Song Han3 
1Tsinghua University         2CMU         3MIT Code: https://github.com/mit-han-lab/litepose

Cr
ow

dP
os

e 
m

AP
 ↑

Deconv Fusion Deconv

54.7

47.1HR Fusion
Im

ag
eN

et
 T

op
1 

Ac
c 
↑

k=3 k=5 k=7

73.573.4

72.0

Cr
ow

dP
os

e 
m

AP
 ↑

k=3 k=5 k=7 k=9

53.3
54.7

50.7

41.7

Image Classification Pose Estimation

Little Impact
Drop

Cr
ow

dP
os

e 
m

AP
 ↑

HigherHRNet Shrink1 Shrink2 Shrink3

53.0

51.8

51.0

50.4

Compare with SOTA on the CrowdPose Dataset: 2.8-5x measured speedup
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However, current pose estimation models are 
too heavy for edge devices. We introduce 
LitePose to close the gap.

Many human-centered vision applications rely on real-
time multi-person pose estimation on edge devices, 
requiring low-computation pose estimation models. 
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Key insights:

1. Single-branch architecture is efficient
2. Large kernel convolution is efficient. 
3. Light-weight fusion deconv head.

Redundancy in High-Resolution Branches

We gradually remove blocks in high-resolution branches starting from HigherHRNet. Removed blocks 
are shown in transparent. The performance improves as we shrink the high-resolution branches.

Unlike image classification, large kernel depthwise convolution plays a 
critical role in pose estimation. Increasing the kernel size from 3 to 7 
improves the mAP by 13% mAP on the CrowdPose dataset with little 
overhead.

We employ the lightweight fusion deconv head to enable multi-
resolution feature fusion without heavy high-resolution branches. 

https://github.com/mit-han-lab/litepose

