---
base_model: sentence-transformers/paraphrase-mpnet-base-v2
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: and importance of the climate crisis requires everyone to play their part.
- text: The Group has unused tax losses carried forward of 512m, primarily UK capital
losses, on which no deferred tax is recognised.
- text: If an acquirer of shares is not prepared to provide this declaration, the
Board may refuse to register him as a shareholder with the right to vote.
- text: The Company will also make every effort to improve the effectiveness of its
sustainability reporting.
- text: The Company maintains sufficient liquidity and has a variety of contingent
liquidity resources to manage liquidity across a range of economic scenarios.
inference: true
model-index:
- name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.7657430730478589
name: Accuracy
---
# SetFit with sentence-transformers/paraphrase-mpnet-base-v2
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 2 classes
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.0 |
- 'We believe that no company should prosper while violating the basic human rights of others whether through unlawful slavery, servitude, forced or compulsory labor, or otherwise exploitative means.'
- 'The decreases in the current period were offset, in part, by increases in conference and training expenditures incurred.'
- 'Environmental Responsibility As a core part of our business, we continually monitor, assess and respond not only to the risks but also to the opportunities posed by changing climate conditions.'
|
| 1.0 | - 'In addition, we have a majority standard for the election of directors on our board.'
- 'We generally find that it is more effective to take a collaborative approach in identifying and addressing proposed regulatory changes related to our assets and operations.'
- 'Regulations of the Supervisory Board The tasks, responsibilities and internal procedural matters for the Supervisory Board are addressed in the Regulations of the Supervisory Board and are available on our corporate website.'
|
## Evaluation
### Metrics
| Label | Accuracy |
|:--------|:---------|
| **all** | 0.7657 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mitra-mir/setfit-model-ESG-environmental")
# Run inference
preds = model("and importance of the climate crisis requires everyone to play their part.")
```
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:--------|:----|
| Word count | 3 | 25.4020 | 72 |
| Label | Training Sample Count |
|:------|:----------------------|
| 0.0 | 148 |
| 1.0 | 51 |
### Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 20
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:------:|:----:|:-------------:|:---------------:|
| 0.0020 | 1 | 0.4091 | - |
| 0.1004 | 50 | 0.1992 | - |
| 0.2008 | 100 | 0.0104 | - |
| 0.3012 | 150 | 0.0006 | - |
| 0.4016 | 200 | 0.0003 | - |
| 0.5020 | 250 | 0.0002 | - |
| 0.6024 | 300 | 0.0002 | - |
| 0.7028 | 350 | 0.0001 | - |
| 0.8032 | 400 | 0.0001 | - |
| 0.9036 | 450 | 0.0001 | - |
| 0.0020 | 1 | 0.25 | - |
| 0.1004 | 50 | 0.349 | - |
| 0.2008 | 100 | 0.047 | - |
| 0.3012 | 150 | 0.0172 | - |
| 0.4016 | 200 | 0.0023 | - |
| 0.5020 | 250 | 0.0002 | - |
| 0.6024 | 300 | 0.0002 | - |
| 0.7028 | 350 | 0.0003 | - |
| 0.8032 | 400 | 0.0001 | - |
| 0.9036 | 450 | 0.0001 | - |
| 0.0020 | 1 | 0.3684 | - |
| 0.1004 | 50 | 0.39 | - |
| 0.2008 | 100 | 0.1277 | - |
| 0.3012 | 150 | 0.0064 | - |
| 0.4016 | 200 | 0.0006 | - |
| 0.5020 | 250 | 0.0004 | - |
| 0.6024 | 300 | 0.0003 | - |
| 0.7028 | 350 | 0.0003 | - |
| 0.8032 | 400 | 0.0002 | - |
| 0.9036 | 450 | 0.0002 | - |
### Framework Versions
- Python: 3.11.6
- SetFit: 1.1.0
- Sentence Transformers: 3.2.1
- Transformers: 4.43.4
- PyTorch: 2.4.1+cu121
- Datasets: 3.0.1
- Tokenizers: 0.19.1
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```