mkahari commited on
Commit
01a5f69
1 Parent(s): d9a0fdc

PPO LunarLander-v2 model

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 265.07 +/- 15.38
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd36993e160>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd36993e1f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd36993e280>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd36993e310>", "_build": "<function ActorCriticPolicy._build at 0x7fd36993e3a0>", "forward": "<function ActorCriticPolicy.forward at 0x7fd36993e430>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd36993e4c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd36993e550>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd36993e5e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd36993e670>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd36993e700>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd36993e790>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fd36993a630>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 212992, "_total_timesteps": 200000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673472030957966996, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAF2ClD4koW4/7iaQPjfrkr64Q2Y+4z/zvAAAAAAAAAAAmjq3vMFZUT+Agci9xqWxvrYcR70Q8dA7AAAAAAAAAAA+a42+H01nP6FIg76p/te+knFsvt68rTwAAAAAAAAAACBZMj5SWa88MhWPt8GRuzWeYEI+7g7NNgAAgD8AAIA/MzEuvFggNz+OG4O8namqvkzOqLwdOZo9AAAAAAAAAAAKVYc++aiLP8KcMz7FHLC+fuZYPv6lbr0AAAAAAAAAAOAPJr5zKRc//h0LPgHDj77EvQ29BJzLPAAAAAAAAAAAQPT4vRRW8Tv+MWk+vWszvjU9pLwe9jc9AAAAAAAAAAAzRpk9gTa5PnCcT7xXkn++g0daPAmyBT0AAAAAAAAAAFp40z1sus27a4ddvKABCT3Ccxs9/eThvQAAgD8AAIA/PUezvvKKxT5ab3c9ZSBtvuJSAr4j/ne8AAAAAAAAAACmjxu+oJTzPm/RCz0r7Z++D8tlvbaczD0AAAAAAAAAABpOFL7s8vC7/pIPu0PF57hxZFE9YfE3OgAAgD8AAIA/zQy6u4/WIbpW7JS162vcsECJ2jqRRrc0AACAPwAAgD9mH4m8rgGFump6B7ejcwGy8CBFO2jsHjYAAIA/AACAP9o5oT249uu5CO5VPcf9I7PMVKA6WoJHswAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0649599999999999, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMImpfD7rvZbkCUhpRSlIwBbJRNOgGMAXSUR0CmOS20Z3s5dX2UKGgGaAloD0MIuhKB6h/fb0CUhpRSlGgVTRMBaBZHQKY5RC5VfeF1fZQoaAZoCWgPQwjpuBrZ1RZwQJSGlFKUaBVL/2gWR0CmOguIAOridX2UKGgGaAloD0MI2zAKgsfZbkCUhpRSlGgVTRUBaBZHQKY6KIQe3hJ1fZQoaAZoCWgPQwhu+N10S3VwQJSGlFKUaBVNHgFoFkdApjpGWrwOOXV9lChoBmgJaA9DCD5BYrv7jXFAlIaUUpRoFU1HAWgWR0CmOvnU2DQJdX2UKGgGaAloD0MI3QvMCkWybkCUhpRSlGgVTR8BaBZHQKY7p/+85CF1fZQoaAZoCWgPQwiCVIodDd5xQJSGlFKUaBVL8GgWR0CmPCHwXqJNdX2UKGgGaAloD0MICw3EsplscUCUhpRSlGgVTS0BaBZHQKY8Qol2Ned1fZQoaAZoCWgPQwiobcMoiPdyQJSGlFKUaBVNPwFoFkdApjxh/5LytnV9lChoBmgJaA9DCIS8HkxK7XBAlIaUUpRoFU0QAWgWR0CmPGqs+3YudX2UKGgGaAloD0MI71UrE75hcUCUhpRSlGgVTT0BaBZHQKY8oXqqwQl1fZQoaAZoCWgPQwjZJ4Bi5IJsQJSGlFKUaBVNBQFoFkdApj0shmoR7XV9lChoBmgJaA9DCMTQ6uQMmXBAlIaUUpRoFU0tAWgWR0CmPTNXYDkmdX2UKGgGaAloD0MIFaqbiz8Fb0CUhpRSlGgVTQMBaBZHQKY9agW8AaN1fZQoaAZoCWgPQwggs7PoHSxlQJSGlFKUaBVN6ANoFkdApj19IiC8OHV9lChoBmgJaA9DCLTHC+lwVm5AlIaUUpRoFU0fAWgWR0CmPbjEm6XjdX2UKGgGaAloD0MI3/sbtBeccECUhpRSlGgVTQgBaBZHQKY+MgjhUBJ1fZQoaAZoCWgPQwgC8bp+wY1uQJSGlFKUaBVNEwFoFkdApj5xb0OEunV9lChoBmgJaA9DCMBeYcF9qm9AlIaUUpRoFU0aAWgWR0CmPqcWsRxtdX2UKGgGaAloD0MIByY3iiwIbUCUhpRSlGgVTQoBaBZHQKY/FrnDBM11fZQoaAZoCWgPQwiQ3Jp0W9ZDQJSGlFKUaBVLzmgWR0CmPzMHB1s+dX2UKGgGaAloD0MIETXR5+NJcUCUhpRSlGgVTQwBaBZHQKY/tyBClad1fZQoaAZoCWgPQwg9mBQfnxJkQJSGlFKUaBVN6ANoFkdApkA9vIfbK3V9lChoBmgJaA9DCOrQ6Xn3jnBAlIaUUpRoFU0MAWgWR0CmQEKBEroXdX2UKGgGaAloD0MIV9Efmnkfb0CUhpRSlGgVTQgBaBZHQKZAUMMqjJx1fZQoaAZoCWgPQwj6Dn7iwC9xQJSGlFKUaBVNAQFoFkdApkBu5WilBXV9lChoBmgJaA9DCHUGRl4Ww3FAlIaUUpRoFU0ZAWgWR0CmQJRpcophdX2UKGgGaAloD0MI6Z51jRbYb0CUhpRSlGgVTRUBaBZHQKZBLi/fwZx1fZQoaAZoCWgPQwjBV3TrteFvQJSGlFKUaBVNGwFoFkdApkFH2RJVbXV9lChoBmgJaA9DCNdnzvoUJnBAlIaUUpRoFUv0aBZHQKZBssCkoF51fZQoaAZoCWgPQwinPSXnRJJwQJSGlFKUaBVNHAFoFkdApkHI5ksjFHV9lChoBmgJaA9DCO1FtB0TD3JAlIaUUpRoFU1BAWgWR0CmQfmYjSogdX2UKGgGaAloD0MI/RNcrKgTckCUhpRSlGgVTUgBaBZHQKZCJgCwKSh1fZQoaAZoCWgPQwjBkNWtnrxyQJSGlFKUaBVL/GgWR0CmQj2mxdIHdX2UKGgGaAloD0MIaQBvgQTockCUhpRSlGgVTT0BaBZHQKZC4aoddVx1fZQoaAZoCWgPQwg3ww34vFlyQJSGlFKUaBVNNgFoFkdApkNwQrc0tXV9lChoBmgJaA9DCKlr7X3qvHBAlIaUUpRoFUvxaBZHQKZDnNlAeJZ1fZQoaAZoCWgPQwh2ieqtwfxwQJSGlFKUaBVL/WgWR0CmQ7q77Kq5dX2UKGgGaAloD0MITRO2nwxocUCUhpRSlGgVTSEBaBZHQKZDyYoiLVF1fZQoaAZoCWgPQwjikXh5Op5xQJSGlFKUaBVNCwFoFkdApkRI4MnZ03V9lChoBmgJaA9DCL1zKENVCnFAlIaUUpRoFU0qAWgWR0CmRGtGNJe3dX2UKGgGaAloD0MIgJpattbgcECUhpRSlGgVTSoBaBZHQKZElUExIrh1fZQoaAZoCWgPQwh+cD51rKhuQJSGlFKUaBVNAgFoFkdApkS/9rGipXV9lChoBmgJaA9DCLcKYqBrq3BAlIaUUpRoFU0yAWgWR0CmRZBrWRRudX2UKGgGaAloD0MIv+/fvPiCcUCUhpRSlGgVTRkBaBZHQKZFqn4wh4d1fZQoaAZoCWgPQwj/JalM8bxyQJSGlFKUaBVNCQFoFkdApkW+vbGm13V9lChoBmgJaA9DCNB8zt2uuXBAlIaUUpRoFU0MAWgWR0CmRfS619fDdX2UKGgGaAloD0MIW5pbIaxdbkCUhpRSlGgVTSgBaBZHQKZF94HHFP11fZQoaAZoCWgPQwjyJOmaiXJyQJSGlFKUaBVNOgFoFkdApkanlIVdonV9lChoBmgJaA9DCOdUMgCUFXJAlIaUUpRoFU0xAWgWR0CmUHlQEZBLdX2UKGgGaAloD0MIPnlYqHXjcECUhpRSlGgVTRABaBZHQKZQlvVmSQp1fZQoaAZoCWgPQwi3Xz5Z8VRxQJSGlFKUaBVNBgFoFkdAplC16Z6Uq3V9lChoBmgJaA9DCIJWYMhqMXJAlIaUUpRoFU0hAWgWR0CmUScbiqACdX2UKGgGaAloD0MIR1m/mRhmcECUhpRSlGgVTQABaBZHQKZRKXD3ueB1fZQoaAZoCWgPQwhTIR6Jl3lwQJSGlFKUaBVL/mgWR0CmUUDlo11odX2UKGgGaAloD0MIlgSoqeXnckCUhpRSlGgVTUYBaBZHQKZRgeaKDTV1fZQoaAZoCWgPQwgLCoMyjT5uQJSGlFKUaBVNLwFoFkdAplIijJuEVXV9lChoBmgJaA9DCE5iEFg5sHBAlIaUUpRoFU08AWgWR0CmUoWPkq+bdX2UKGgGaAloD0MIdJgvL8B9cECUhpRSlGgVTREBaBZHQKZStSuyNXJ1fZQoaAZoCWgPQwgSZ0XUxGFtQJSGlFKUaBVNOwFoFkdAplN5xPwd83V9lChoBmgJaA9DCFXejnCaMnJAlIaUUpRoFU0oAWgWR0CmU4P8AJb/dX2UKGgGaAloD0MIQGoTJ3ftcECUhpRSlGgVTQQBaBZHQKZTx1uBMBZ1fZQoaAZoCWgPQwgXuaerOztrQJSGlFKUaBVNGwFoFkdAplTZiExqPHV9lChoBmgJaA9DCBMOvcVD2HBAlIaUUpRoFU0pAWgWR0CmVTev6j33dX2UKGgGaAloD0MI+PnvwevxcECUhpRSlGgVTQIBaBZHQKZVWt1ZDAt1fZQoaAZoCWgPQwjSAUnYN0RvQJSGlFKUaBVNsgFoFkdAplWR6dDpknV9lChoBmgJaA9DCMssQrGVDnNAlIaUUpRoFU07AWgWR0CmVicp9ZzQdX2UKGgGaAloD0MInuv7cBD/cUCUhpRSlGgVTSQBaBZHQKZWMqSX+l11fZQoaAZoCWgPQwhv1ArTN7dwQJSGlFKUaBVNTQFoFkdAplZ2dbxEv3V9lChoBmgJaA9DCKirOxZbcG5AlIaUUpRoFU0CAWgWR0CmVrnhsImgdX2UKGgGaAloD0MI/Wg4Ze6lcECUhpRSlGgVTS8BaBZHQKZXB9gF5fN1fZQoaAZoCWgPQwj20D5W8HVjQJSGlFKUaBVN6ANoFkdAplc8JSiudXV9lChoBmgJaA9DCE5hpYLKKXFAlIaUUpRoFUv1aBZHQKZXbE9dNWV1fZQoaAZoCWgPQwhkz57L1I5vQJSGlFKUaBVL+mgWR0CmV3W0zCUHdX2UKGgGaAloD0MIe6GA7WAackCUhpRSlGgVTTABaBZHQKZXhe7+T/11fZQoaAZoCWgPQwjA6zNn/YtsQJSGlFKUaBVNuwFoFkdApleOCyyD7XV9lChoBmgJaA9DCGpnmNoSHXBAlIaUUpRoFU0qAWgWR0CmWDwKSgXedX2UKGgGaAloD0MIPdF14QeUbkCUhpRSlGgVTQYBaBZHQKZY4KuSwGJ1fZQoaAZoCWgPQwh+p8mMd+BwQJSGlFKUaBVNDQFoFkdAplkWycCo0nV9lChoBmgJaA9DCKCmlq31IHJAlIaUUpRoFU1BAWgWR0CmWWwr1/UfdX2UKGgGaAloD0MI02cHXNcKcECUhpRSlGgVTRkBaBZHQKZZ/RIBikR1fZQoaAZoCWgPQwjPE8/ZwptxQJSGlFKUaBVNKAFoFkdAplpIiml67nV9lChoBmgJaA9DCCr+74hKh3FAlIaUUpRoFU0NAWgWR0CmWmE1VHWjdX2UKGgGaAloD0MIHQBxV29VcUCUhpRSlGgVTSIBaBZHQKZabowmE5B1fZQoaAZoCWgPQwgSpb3Bl09vQJSGlFKUaBVNBQFoFkdAplrMAJb+tXV9lChoBmgJaA9DCDi8ICI1NnJAlIaUUpRoFU0pAWgWR0CmWxogvDgqdX2UKGgGaAloD0MIeZEJ+HWvcUCUhpRSlGgVTQkBaBZHQKZbOnAIpph1fZQoaAZoCWgPQwi/fLJiOB5tQJSGlFKUaBVNHAFoFkdApltW5c1O03V9lChoBmgJaA9DCB/11ytsuHFAlIaUUpRoFU0oAWgWR0CmW5p3X7LudX2UKGgGaAloD0MI+5P43MlqcUCUhpRSlGgVTRwBaBZHQKZcU0l7dBV1fZQoaAZoCWgPQwhSEDy+fXRyQJSGlFKUaBVNGQFoFkdApl0MI/qxDHV9lChoBmgJaA9DCF5kAn4N8G5AlIaUUpRoFU0WAWgWR0CmXa1Tzd1udX2UKGgGaAloD0MIwM3ixQIackCUhpRSlGgVS/loFkdApl3UQVbiZXV9lChoBmgJaA9DCI7pCUv8eHJAlIaUUpRoFU03AWgWR0CmXddb5dnkdX2UKGgGaAloD0MI8gpET8oeZUCUhpRSlGgVTegDaBZHQKZeFBrN4aB1fZQoaAZoCWgPQwjVBbzM8HVwQJSGlFKUaBVNAwFoFkdApl5KZrpJPXV9lChoBmgJaA9DCGaIY13cZHNAlIaUUpRoFU0NAWgWR0CmXoi5mRNidX2UKGgGaAloD0MIRIZVvJG9cECUhpRSlGgVTQkBaBZHQKZeh+6y0KJ1fZQoaAZoCWgPQwhJgQUwZXBtQJSGlFKUaBVL92gWR0CmXp7ayrxRdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 456, "n_steps": 1024, "gamma": 0.998, "gae_lambda": 0.94, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
mk_ppo_lunar.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f5457919fb57040640caf26c3813f86254604d36a4647a0190466132fd379231
3
+ size 147404
mk_ppo_lunar/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
mk_ppo_lunar/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd36993e160>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd36993e1f0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd36993e280>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd36993e310>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fd36993e3a0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fd36993e430>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd36993e4c0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd36993e550>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fd36993e5e0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd36993e670>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd36993e700>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd36993e790>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7fd36993a630>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 212992,
47
+ "_total_timesteps": 200000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1673472030957966996,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAF2ClD4koW4/7iaQPjfrkr64Q2Y+4z/zvAAAAAAAAAAAmjq3vMFZUT+Agci9xqWxvrYcR70Q8dA7AAAAAAAAAAA+a42+H01nP6FIg76p/te+knFsvt68rTwAAAAAAAAAACBZMj5SWa88MhWPt8GRuzWeYEI+7g7NNgAAgD8AAIA/MzEuvFggNz+OG4O8namqvkzOqLwdOZo9AAAAAAAAAAAKVYc++aiLP8KcMz7FHLC+fuZYPv6lbr0AAAAAAAAAAOAPJr5zKRc//h0LPgHDj77EvQ29BJzLPAAAAAAAAAAAQPT4vRRW8Tv+MWk+vWszvjU9pLwe9jc9AAAAAAAAAAAzRpk9gTa5PnCcT7xXkn++g0daPAmyBT0AAAAAAAAAAFp40z1sus27a4ddvKABCT3Ccxs9/eThvQAAgD8AAIA/PUezvvKKxT5ab3c9ZSBtvuJSAr4j/ne8AAAAAAAAAACmjxu+oJTzPm/RCz0r7Z++D8tlvbaczD0AAAAAAAAAABpOFL7s8vC7/pIPu0PF57hxZFE9YfE3OgAAgD8AAIA/zQy6u4/WIbpW7JS162vcsECJ2jqRRrc0AACAPwAAgD9mH4m8rgGFump6B7ejcwGy8CBFO2jsHjYAAIA/AACAP9o5oT249uu5CO5VPcf9I7PMVKA6WoJHswAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.0649599999999999,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVdRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMImpfD7rvZbkCUhpRSlIwBbJRNOgGMAXSUR0CmOS20Z3s5dX2UKGgGaAloD0MIuhKB6h/fb0CUhpRSlGgVTRMBaBZHQKY5RC5VfeF1fZQoaAZoCWgPQwjpuBrZ1RZwQJSGlFKUaBVL/2gWR0CmOguIAOridX2UKGgGaAloD0MI2zAKgsfZbkCUhpRSlGgVTRUBaBZHQKY6KIQe3hJ1fZQoaAZoCWgPQwhu+N10S3VwQJSGlFKUaBVNHgFoFkdApjpGWrwOOXV9lChoBmgJaA9DCD5BYrv7jXFAlIaUUpRoFU1HAWgWR0CmOvnU2DQJdX2UKGgGaAloD0MI3QvMCkWybkCUhpRSlGgVTR8BaBZHQKY7p/+85CF1fZQoaAZoCWgPQwiCVIodDd5xQJSGlFKUaBVL8GgWR0CmPCHwXqJNdX2UKGgGaAloD0MICw3EsplscUCUhpRSlGgVTS0BaBZHQKY8Qol2Ned1fZQoaAZoCWgPQwiobcMoiPdyQJSGlFKUaBVNPwFoFkdApjxh/5LytnV9lChoBmgJaA9DCIS8HkxK7XBAlIaUUpRoFU0QAWgWR0CmPGqs+3YudX2UKGgGaAloD0MI71UrE75hcUCUhpRSlGgVTT0BaBZHQKY8oXqqwQl1fZQoaAZoCWgPQwjZJ4Bi5IJsQJSGlFKUaBVNBQFoFkdApj0shmoR7XV9lChoBmgJaA9DCMTQ6uQMmXBAlIaUUpRoFU0tAWgWR0CmPTNXYDkmdX2UKGgGaAloD0MIFaqbiz8Fb0CUhpRSlGgVTQMBaBZHQKY9agW8AaN1fZQoaAZoCWgPQwggs7PoHSxlQJSGlFKUaBVN6ANoFkdApj19IiC8OHV9lChoBmgJaA9DCLTHC+lwVm5AlIaUUpRoFU0fAWgWR0CmPbjEm6XjdX2UKGgGaAloD0MI3/sbtBeccECUhpRSlGgVTQgBaBZHQKY+MgjhUBJ1fZQoaAZoCWgPQwgC8bp+wY1uQJSGlFKUaBVNEwFoFkdApj5xb0OEunV9lChoBmgJaA9DCMBeYcF9qm9AlIaUUpRoFU0aAWgWR0CmPqcWsRxtdX2UKGgGaAloD0MIByY3iiwIbUCUhpRSlGgVTQoBaBZHQKY/FrnDBM11fZQoaAZoCWgPQwiQ3Jp0W9ZDQJSGlFKUaBVLzmgWR0CmPzMHB1s+dX2UKGgGaAloD0MIETXR5+NJcUCUhpRSlGgVTQwBaBZHQKY/tyBClad1fZQoaAZoCWgPQwg9mBQfnxJkQJSGlFKUaBVN6ANoFkdApkA9vIfbK3V9lChoBmgJaA9DCOrQ6Xn3jnBAlIaUUpRoFU0MAWgWR0CmQEKBEroXdX2UKGgGaAloD0MIV9Efmnkfb0CUhpRSlGgVTQgBaBZHQKZAUMMqjJx1fZQoaAZoCWgPQwj6Dn7iwC9xQJSGlFKUaBVNAQFoFkdApkBu5WilBXV9lChoBmgJaA9DCHUGRl4Ww3FAlIaUUpRoFU0ZAWgWR0CmQJRpcophdX2UKGgGaAloD0MI6Z51jRbYb0CUhpRSlGgVTRUBaBZHQKZBLi/fwZx1fZQoaAZoCWgPQwjBV3TrteFvQJSGlFKUaBVNGwFoFkdApkFH2RJVbXV9lChoBmgJaA9DCNdnzvoUJnBAlIaUUpRoFUv0aBZHQKZBssCkoF51fZQoaAZoCWgPQwinPSXnRJJwQJSGlFKUaBVNHAFoFkdApkHI5ksjFHV9lChoBmgJaA9DCO1FtB0TD3JAlIaUUpRoFU1BAWgWR0CmQfmYjSogdX2UKGgGaAloD0MI/RNcrKgTckCUhpRSlGgVTUgBaBZHQKZCJgCwKSh1fZQoaAZoCWgPQwjBkNWtnrxyQJSGlFKUaBVL/GgWR0CmQj2mxdIHdX2UKGgGaAloD0MIaQBvgQTockCUhpRSlGgVTT0BaBZHQKZC4aoddVx1fZQoaAZoCWgPQwg3ww34vFlyQJSGlFKUaBVNNgFoFkdApkNwQrc0tXV9lChoBmgJaA9DCKlr7X3qvHBAlIaUUpRoFUvxaBZHQKZDnNlAeJZ1fZQoaAZoCWgPQwh2ieqtwfxwQJSGlFKUaBVL/WgWR0CmQ7q77Kq5dX2UKGgGaAloD0MITRO2nwxocUCUhpRSlGgVTSEBaBZHQKZDyYoiLVF1fZQoaAZoCWgPQwjikXh5Op5xQJSGlFKUaBVNCwFoFkdApkRI4MnZ03V9lChoBmgJaA9DCL1zKENVCnFAlIaUUpRoFU0qAWgWR0CmRGtGNJe3dX2UKGgGaAloD0MIgJpattbgcECUhpRSlGgVTSoBaBZHQKZElUExIrh1fZQoaAZoCWgPQwh+cD51rKhuQJSGlFKUaBVNAgFoFkdApkS/9rGipXV9lChoBmgJaA9DCLcKYqBrq3BAlIaUUpRoFU0yAWgWR0CmRZBrWRRudX2UKGgGaAloD0MIv+/fvPiCcUCUhpRSlGgVTRkBaBZHQKZFqn4wh4d1fZQoaAZoCWgPQwj/JalM8bxyQJSGlFKUaBVNCQFoFkdApkW+vbGm13V9lChoBmgJaA9DCNB8zt2uuXBAlIaUUpRoFU0MAWgWR0CmRfS619fDdX2UKGgGaAloD0MIW5pbIaxdbkCUhpRSlGgVTSgBaBZHQKZF94HHFP11fZQoaAZoCWgPQwjyJOmaiXJyQJSGlFKUaBVNOgFoFkdApkanlIVdonV9lChoBmgJaA9DCOdUMgCUFXJAlIaUUpRoFU0xAWgWR0CmUHlQEZBLdX2UKGgGaAloD0MIPnlYqHXjcECUhpRSlGgVTRABaBZHQKZQlvVmSQp1fZQoaAZoCWgPQwi3Xz5Z8VRxQJSGlFKUaBVNBgFoFkdAplC16Z6Uq3V9lChoBmgJaA9DCIJWYMhqMXJAlIaUUpRoFU0hAWgWR0CmUScbiqACdX2UKGgGaAloD0MIR1m/mRhmcECUhpRSlGgVTQABaBZHQKZRKXD3ueB1fZQoaAZoCWgPQwhTIR6Jl3lwQJSGlFKUaBVL/mgWR0CmUUDlo11odX2UKGgGaAloD0MIlgSoqeXnckCUhpRSlGgVTUYBaBZHQKZRgeaKDTV1fZQoaAZoCWgPQwgLCoMyjT5uQJSGlFKUaBVNLwFoFkdAplIijJuEVXV9lChoBmgJaA9DCE5iEFg5sHBAlIaUUpRoFU08AWgWR0CmUoWPkq+bdX2UKGgGaAloD0MIdJgvL8B9cECUhpRSlGgVTREBaBZHQKZStSuyNXJ1fZQoaAZoCWgPQwgSZ0XUxGFtQJSGlFKUaBVNOwFoFkdAplN5xPwd83V9lChoBmgJaA9DCFXejnCaMnJAlIaUUpRoFU0oAWgWR0CmU4P8AJb/dX2UKGgGaAloD0MIQGoTJ3ftcECUhpRSlGgVTQQBaBZHQKZTx1uBMBZ1fZQoaAZoCWgPQwgXuaerOztrQJSGlFKUaBVNGwFoFkdAplTZiExqPHV9lChoBmgJaA9DCBMOvcVD2HBAlIaUUpRoFU0pAWgWR0CmVTev6j33dX2UKGgGaAloD0MI+PnvwevxcECUhpRSlGgVTQIBaBZHQKZVWt1ZDAt1fZQoaAZoCWgPQwjSAUnYN0RvQJSGlFKUaBVNsgFoFkdAplWR6dDpknV9lChoBmgJaA9DCMssQrGVDnNAlIaUUpRoFU07AWgWR0CmVicp9ZzQdX2UKGgGaAloD0MInuv7cBD/cUCUhpRSlGgVTSQBaBZHQKZWMqSX+l11fZQoaAZoCWgPQwhv1ArTN7dwQJSGlFKUaBVNTQFoFkdAplZ2dbxEv3V9lChoBmgJaA9DCKirOxZbcG5AlIaUUpRoFU0CAWgWR0CmVrnhsImgdX2UKGgGaAloD0MI/Wg4Ze6lcECUhpRSlGgVTS8BaBZHQKZXB9gF5fN1fZQoaAZoCWgPQwj20D5W8HVjQJSGlFKUaBVN6ANoFkdAplc8JSiudXV9lChoBmgJaA9DCE5hpYLKKXFAlIaUUpRoFUv1aBZHQKZXbE9dNWV1fZQoaAZoCWgPQwhkz57L1I5vQJSGlFKUaBVL+mgWR0CmV3W0zCUHdX2UKGgGaAloD0MIe6GA7WAackCUhpRSlGgVTTABaBZHQKZXhe7+T/11fZQoaAZoCWgPQwjA6zNn/YtsQJSGlFKUaBVNuwFoFkdApleOCyyD7XV9lChoBmgJaA9DCGpnmNoSHXBAlIaUUpRoFU0qAWgWR0CmWDwKSgXedX2UKGgGaAloD0MIPdF14QeUbkCUhpRSlGgVTQYBaBZHQKZY4KuSwGJ1fZQoaAZoCWgPQwh+p8mMd+BwQJSGlFKUaBVNDQFoFkdAplkWycCo0nV9lChoBmgJaA9DCKCmlq31IHJAlIaUUpRoFU1BAWgWR0CmWWwr1/UfdX2UKGgGaAloD0MI02cHXNcKcECUhpRSlGgVTRkBaBZHQKZZ/RIBikR1fZQoaAZoCWgPQwjPE8/ZwptxQJSGlFKUaBVNKAFoFkdAplpIiml67nV9lChoBmgJaA9DCCr+74hKh3FAlIaUUpRoFU0NAWgWR0CmWmE1VHWjdX2UKGgGaAloD0MIHQBxV29VcUCUhpRSlGgVTSIBaBZHQKZabowmE5B1fZQoaAZoCWgPQwgSpb3Bl09vQJSGlFKUaBVNBQFoFkdAplrMAJb+tXV9lChoBmgJaA9DCDi8ICI1NnJAlIaUUpRoFU0pAWgWR0CmWxogvDgqdX2UKGgGaAloD0MIeZEJ+HWvcUCUhpRSlGgVTQkBaBZHQKZbOnAIpph1fZQoaAZoCWgPQwi/fLJiOB5tQJSGlFKUaBVNHAFoFkdApltW5c1O03V9lChoBmgJaA9DCB/11ytsuHFAlIaUUpRoFU0oAWgWR0CmW5p3X7LudX2UKGgGaAloD0MI+5P43MlqcUCUhpRSlGgVTRwBaBZHQKZcU0l7dBV1fZQoaAZoCWgPQwhSEDy+fXRyQJSGlFKUaBVNGQFoFkdApl0MI/qxDHV9lChoBmgJaA9DCF5kAn4N8G5AlIaUUpRoFU0WAWgWR0CmXa1Tzd1udX2UKGgGaAloD0MIwM3ixQIackCUhpRSlGgVS/loFkdApl3UQVbiZXV9lChoBmgJaA9DCI7pCUv8eHJAlIaUUpRoFU03AWgWR0CmXddb5dnkdX2UKGgGaAloD0MI8gpET8oeZUCUhpRSlGgVTegDaBZHQKZeFBrN4aB1fZQoaAZoCWgPQwjVBbzM8HVwQJSGlFKUaBVNAwFoFkdApl5KZrpJPXV9lChoBmgJaA9DCGaIY13cZHNAlIaUUpRoFU0NAWgWR0CmXoi5mRNidX2UKGgGaAloD0MIRIZVvJG9cECUhpRSlGgVTQkBaBZHQKZeh+6y0KJ1fZQoaAZoCWgPQwhJgQUwZXBtQJSGlFKUaBVL92gWR0CmXp7ayrxRdWUu"
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 456,
80
+ "n_steps": 1024,
81
+ "gamma": 0.998,
82
+ "gae_lambda": 0.94,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
mk_ppo_lunar/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e6f0914d0f4d45f95b2a8088928d9eb1608aa0e12e44aaac67efa8679e099acb
3
+ size 87929
mk_ppo_lunar/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b124db7e9e97edc0ef74bb47a6ab47c0b50ffcef4c2f940c65be3ed2633d509b
3
+ size 43393
mk_ppo_lunar/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
mk_ppo_lunar/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (188 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 265.06530371754076, "std_reward": 15.37728534566076, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-11T21:24:41.290191"}