|
--- |
|
license: mit |
|
library_name: sklearn |
|
tags: |
|
- sklearn |
|
- skops |
|
- tabular-classification |
|
model_format: pickle |
|
model_file: rf_model.pkl |
|
widget: |
|
structuredData: |
|
cons_12m: |
|
- 22353.0 |
|
- 18097.0 |
|
- 1893.0 |
|
cons_last_month: |
|
- 300.0 |
|
- 0.0 |
|
- 0.0 |
|
contract_length: |
|
- 2574 |
|
- 2243 |
|
- 2393 |
|
forecast_cons_12m: |
|
- 1376.530029296875 |
|
- 1810.1199951171875 |
|
- 284.42999267578125 |
|
forecast_cons_year: |
|
- 0.0 |
|
- 0.0 |
|
- 0.0 |
|
forecast_discount_energy: |
|
- 0 |
|
- 0 |
|
- 0 |
|
forecast_meter_rent_12m: |
|
- 0.0 |
|
- 126.66000366210938 |
|
- 19.809999465942383 |
|
forecast_price_pow_off_peak: |
|
- 44.311378479003906 |
|
- 40.6067008972168 |
|
- 44.311378479003906 |
|
has_gas_t: |
|
- 0 |
|
- 0 |
|
- 0 |
|
imp_cons: |
|
- 0.0 |
|
- 0.0 |
|
- 0.0 |
|
margin_gross_pow_ele: |
|
- 29.5 |
|
- 27.0 |
|
- 9.399999618530273 |
|
nb_prod_act: |
|
- 1.0 |
|
- 1.0 |
|
- 1.0 |
|
num_years_antig: |
|
- 6.0 |
|
- 6.0 |
|
- 6.0 |
|
pow_max: |
|
- 14.300000190734863 |
|
- 18.0 |
|
- 12.5 |
|
price_diff_energy_peak_offpeak: |
|
- -0.1458740234375 |
|
- -0.016845703125 |
|
- -0.145751953125 |
|
--- |
|
|
|
# Model description |
|
|
|
[More Information Needed] |
|
|
|
## Intended uses & limitations |
|
|
|
[More Information Needed] |
|
|
|
## Training Procedure |
|
|
|
### Hyperparameters |
|
|
|
The model is trained with below hyperparameters. |
|
|
|
<details> |
|
<summary> Click to expand </summary> |
|
|
|
| Hyperparameter | Value | |
|
|--------------------------|---------| |
|
| bootstrap | True | |
|
| ccp_alpha | 0.0 | |
|
| class_weight | | |
|
| criterion | gini | |
|
| max_depth | | |
|
| max_features | sqrt | |
|
| max_leaf_nodes | | |
|
| max_samples | | |
|
| min_impurity_decrease | 0.0 | |
|
| min_samples_leaf | 1 | |
|
| min_samples_split | 2 | |
|
| min_weight_fraction_leaf | 0.0 | |
|
| n_estimators | 25 | |
|
| n_jobs | -1 | |
|
| oob_score | False | |
|
| random_state | 1 | |
|
| verbose | 0 | |
|
| warm_start | False | |
|
|
|
</details> |
|
|
|
### Model Plot |
|
|
|
The model plot is below. |
|
|
|
<style>#sk-container-id-4 {color: black;background-color: white;}#sk-container-id-4 pre{padding: 0;}#sk-container-id-4 div.sk-toggleable {background-color: white;}#sk-container-id-4 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-4 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-4 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-4 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-4 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-4 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-4 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-4 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-container-id-4 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-4 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-4 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-4 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-4 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-4 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-4 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-4 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-4 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-4 div.sk-item {position: relative;z-index: 1;}#sk-container-id-4 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-4 div.sk-item::before, #sk-container-id-4 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-4 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-4 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-4 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-4 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-4 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-4 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-4 div.sk-label-container {text-align: center;}#sk-container-id-4 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-4 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-4" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>RandomForestClassifier(n_estimators=25, n_jobs=-1, random_state=1)</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-4" type="checkbox" checked><label for="sk-estimator-id-4" class="sk-toggleable__label sk-toggleable__label-arrow">RandomForestClassifier</label><div class="sk-toggleable__content"><pre>RandomForestClassifier(n_estimators=25, n_jobs=-1, random_state=1)</pre></div></div></div></div></div> |
|
|
|
## Evaluation Results |
|
|
|
You can find the details about evaluation process and the evaluation results. |
|
|
|
| Metric | Value | |
|
|----------|----------| |
|
| accuracy | 0.988057 | |
|
| f1 score | 0.988057 | |
|
|
|
# How to Get Started with the Model |
|
|
|
[More Information Needed] |
|
|
|
# Model Card Authors |
|
|
|
This model card is written by following authors: |
|
|
|
[More Information Needed] |
|
|
|
# Model Card Contact |
|
|
|
You can contact the model card authors through following channels: |
|
[More Information Needed] |
|
|
|
# Citation |
|
|
|
Below you can find information related to citation. |
|
|
|
**BibTeX:** |
|
``` |
|
[More Information Needed] |
|
``` |
|
|
|
# citation_bibtex |
|
|
|
bibtex |
|
@inproceedings{...,year={2023}} |
|
|
|
# get_started_code |
|
|
|
import pickle |
|
with open(dtc_pkl_filename, 'rb') as file: |
|
clf = pickle.load(file) |
|
|
|
# model_card_authors |
|
|
|
Marvin Lomo |
|
|
|
# limitations |
|
|
|
This model is not ready to be used in production. |
|
|
|
# model_description |
|
|
|
This is a RandomForrestClassifier model trained on SME Churn Dataset. |
|
|
|
# eval_method |
|
|
|
The model is evaluated using test split, on accuracy and F1 score with macro average. |
|
|
|
# confusion_matrix |
|
|
|
![confusion_matrix](confusion_matrix.png) |
|
|