Maxime Kuntz
commited on
Commit
·
b1cc59d
1
Parent(s):
ead9d88
Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +95 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 272.05 +/- 14.65
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f28c5c48d30>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f28c5c48dc0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f28c5c48e50>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f28c5c48ee0>", "_build": "<function ActorCriticPolicy._build at 0x7f28c5c48f70>", "forward": "<function ActorCriticPolicy.forward at 0x7f28c5c4c040>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f28c5c4c0d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f28c5c4c160>", "_predict": "<function ActorCriticPolicy._predict at 0x7f28c5c4c1f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f28c5c4c280>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f28c5c4c310>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f28c5c4c3a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f28c5c42cf0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676829567314633022, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJql+TxT+rU/Wi7PPrlFP7x+kRQ7d4gDPgAAAAAAAAAAGhcBvfawebo8Hgm9p1c6vgr0Mr0ajkg+AACAPwAAAACaXs+8QYGfP7vL6L2N5Qa//be1vMDE5roAAAAAAAAAABppFj5t7BE/JiMgvtIyur76g5w9KHnavQAAAAAAAAAAAFIPPXEk8D6V8OO9Ck2rvqGhM7zRdI29AAAAAAAAAABm5HO9PZgKu0vMuLt69KQ8K88KPNLIjb0AAIA/AACAPwZ5OT5v3ZU/gdiWPvv4gb4KL74+LcDjPQAAAAAAAAAAGqghvaXvMT794BY9EbCGvtviMr1+RAK6AAAAAAAAAABmBta8uE6eOvziEj6JVPq9iai0PH49Lb8AAAAAAACAP5p8xb0m0RU/J02bPepNor4A30S9NWHvPQAAAAAAAAAAAOI2vkS6gD8W3Ri+H8YKv1itMr4QgbA8AAAAAAAAAADaLwM+T1cUPwQ+rr4PZd2+DxKhvPvjcr0AAAAAAAAAAIBt2D3ciZE/a1stPo9Msb5vSjA+XBKBPQAAAAAAAAAAGmDnPcBguT6FlXa+sjanvoEMrbw5iBK8AAAAAAAAAACaz0u9GWyTP+UPC756QQi/FF8lvYLG9L0AAAAAAAAAAMBrlb3tcaU+bCmmPSCrq74rzwk8NSOtvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVURAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIy/Pg7ixGcUCUhpRSlIwBbJRNBQGMAXSUR0ChW5DdYW+HdX2UKGgGaAloD0MIAkcCDbaXcECUhpRSlGgVS+BoFkdAoVvVdzGPxXV9lChoBmgJaA9DCCJt40/UTnBAlIaUUpRoFUv0aBZHQKFdKZNwiq11fZQoaAZoCWgPQwj18dB3N6hwQJSGlFKUaBVNCAFoFkdAoV1ILNOdoXV9lChoBmgJaA9DCCbEXFL1JnBAlIaUUpRoFUv9aBZHQKFdoWHDaXd1fZQoaAZoCWgPQwiuRnal5f1xQJSGlFKUaBVL2WgWR0ChXarcTJyRdX2UKGgGaAloD0MImZoEb8ilbkCUhpRSlGgVTQwBaBZHQKFdyb/ffoB1fZQoaAZoCWgPQwhqT8k5cUtxQJSGlFKUaBVNDQFoFkdAoV4JRuTA33V9lChoBmgJaA9DCPZFQlsOYHJAlIaUUpRoFU0mAWgWR0ChXgn8jzI4dX2UKGgGaAloD0MISmHe48xfcUCUhpRSlGgVTQEBaBZHQKFenHf/FR51fZQoaAZoCWgPQwjzxklhnj1xQJSGlFKUaBVLz2gWR0ChXrew9q1xdX2UKGgGaAloD0MItMwiFNuYckCUhpRSlGgVS+poFkdAoV8Qjps41nV9lChoBmgJaA9DCDurBfZYxHFAlIaUUpRoFU0qAWgWR0ChX3JON5t4dX2UKGgGaAloD0MInX+77JfOcECUhpRSlGgVS/RoFkdAoV/YTIvJzXV9lChoBmgJaA9DCEw49BaPem9AlIaUUpRoFUv3aBZHQKFgCG3WnTB1fZQoaAZoCWgPQwh7TnrfuFFyQJSGlFKUaBVNFQFoFkdAoWDhffGdZ3V9lChoBmgJaA9DCHFXryIj5G5AlIaUUpRoFUvhaBZHQKFiOk0Jng51fZQoaAZoCWgPQwhE+1jBrypyQJSGlFKUaBVL+WgWR0ChYlLq2SdOdX2UKGgGaAloD0MIscQDyiaIcUCUhpRSlGgVTRIBaBZHQKFiWYyfthN1fZQoaAZoCWgPQwi/J9apMrpxQJSGlFKUaBVL/WgWR0ChYl+MZP2xdX2UKGgGaAloD0MIOLu1TIYmcECUhpRSlGgVTQ8BaBZHQKFiZUR3/xV1fZQoaAZoCWgPQwhD5sqg2ndyQJSGlFKUaBVNBwFoFkdAoWK3A/LTyHV9lChoBmgJaA9DCK5kx0ZgkHBAlIaUUpRoFUv+aBZHQKFiz47ihnJ1fZQoaAZoCWgPQwixUkFFlZtxQJSGlFKUaBVL62gWR0ChYzGcvugIdX2UKGgGaAloD0MI0Eaum9JtckCUhpRSlGgVS/loFkdAoWNVeyAxz3V9lChoBmgJaA9DCFUWhV2UjW9AlIaUUpRoFUvqaBZHQKFjiPZqVQh1fZQoaAZoCWgPQwi0keumVERyQJSGlFKUaBVNAgFoFkdAoWRiTdLxqnV9lChoBmgJaA9DCCL7IMtCNnBAlIaUUpRoFUv5aBZHQKFk7s3Q2Mt1fZQoaAZoCWgPQwj2XnzRHnlyQJSGlFKUaBVNCAFoFkdAoWUClFc6eXV9lChoBmgJaA9DCDXtYppp1XJAlIaUUpRoFUvyaBZHQKFldZ7HAAR1fZQoaAZoCWgPQwiSBre1hRBzQJSGlFKUaBVL5WgWR0ChZjANwzcidX2UKGgGaAloD0MIxomvdlQ9cUCUhpRSlGgVS/BoFkdAoWZS37UG3XV9lChoBmgJaA9DCA4WTtJ8mnFAlIaUUpRoFUvTaBZHQKFmj+AEt/Z1fZQoaAZoCWgPQwjHm/wW3dxyQJSGlFKUaBVNCgFoFkdAoWah4hUzbnV9lChoBmgJaA9DCKwCtRj8lXJAlIaUUpRoFU0GAWgWR0ChZqb3oLXudX2UKGgGaAloD0MI+fauQR8CckCUhpRSlGgVTQYBaBZHQKFmrbkfcN91fZQoaAZoCWgPQwhqoWRyqk1yQJSGlFKUaBVL/mgWR0ChZtgKF7D3dX2UKGgGaAloD0MIIjXtYlotckCUhpRSlGgVS/BoFkdAoWcNdeIEbHV9lChoBmgJaA9DCA+6hENvp2ZAlIaUUpRoFU3oA2gWR0ChZ5qTbFjvdX2UKGgGaAloD0MIJ9pVSLl3c0CUhpRSlGgVTRIBaBZHQKFnq11GLDR1fZQoaAZoCWgPQwhjYYicPjlwQJSGlFKUaBVL6WgWR0Chck6CDmKZdX2UKGgGaAloD0MI4297gsTfcECUhpRSlGgVTQoBaBZHQKFyV7SiM5x1fZQoaAZoCWgPQwgMeJlho3NzQJSGlFKUaBVNAQFoFkdAoXKhEnb7CXV9lChoBmgJaA9DCJBMh06PRnJAlIaUUpRoFUvyaBZHQKFy5xXnyNJ1fZQoaAZoCWgPQwiKkLqd/T5jQJSGlFKUaBVN6ANoFkdAoXLrR+jM3nV9lChoBmgJaA9DCHOfHAWI+nBAlIaUUpRoFUvbaBZHQKFzaFbmlqJ1fZQoaAZoCWgPQwj19BH4QyVwQJSGlFKUaBVL7mgWR0Chc46A4GUwdX2UKGgGaAloD0MI5/7qcZ/LcUCUhpRSlGgVS/ZoFkdAoXQvEOy3TnV9lChoBmgJaA9DCGHj+nd9zW9AlIaUUpRoFUvraBZHQKF0Qqfe1rt1fZQoaAZoCWgPQwjMtz6sd4VyQJSGlFKUaBVNAAFoFkdAoXRf0I1LrXV9lChoBmgJaA9DCOLkfoei1W9AlIaUUpRoFUvqaBZHQKF0eT2WY4R1fZQoaAZoCWgPQwj5Tsx68exyQJSGlFKUaBVNGgFoFkdAoXSwIt16mnV9lChoBmgJaA9DCAEydOygLHBAlIaUUpRoFUvUaBZHQKF1Rhx5s0p1fZQoaAZoCWgPQwjBcRk39R5xQJSGlFKUaBVNAQFoFkdAoXVVNFjNIXV9lChoBmgJaA9DCGzp0VTPLG9AlIaUUpRoFU0dAWgWR0ChdcvtMPBjdX2UKGgGaAloD0MIY30Dk1vPcUCUhpRSlGgVTRABaBZHQKF2KdOIqLF1fZQoaAZoCWgPQwh0z7pGC+1wQJSGlFKUaBVNAQFoFkdAoXY1mDlHSXV9lChoBmgJaA9DCOYGQx1WVnNAlIaUUpRoFUv7aBZHQKF2baPCEYh1fZQoaAZoCWgPQwjIef8fp+dyQJSGlFKUaBVNBQFoFkdAoXaWMCLde3V9lChoBmgJaA9DCFftmpCWc3JAlIaUUpRoFUvxaBZHQKF3BgCwKSh1fZQoaAZoCWgPQwhY4ZaPpJRwQJSGlFKUaBVNIQFoFkdAoXeQIUrTY3V9lChoBmgJaA9DCOBm8WLhq3FAlIaUUpRoFUv7aBZHQKF3wPCEYfp1fZQoaAZoCWgPQwiAETRmUsdyQJSGlFKUaBVL62gWR0CheAYzabnYdX2UKGgGaAloD0MIrDyBsJONcECUhpRSlGgVTQMBaBZHQKF4DBhx5s11fZQoaAZoCWgPQwj5n/zdu+BtQJSGlFKUaBVNHAFoFkdAoXhK9AX2unV9lChoBmgJaA9DCBMLfEW3TnFAlIaUUpRoFU0qAWgWR0CheLdE1EVndX2UKGgGaAloD0MITaJe8OkUbkCUhpRSlGgVS/ZoFkdAoXjiL0jC53V9lChoBmgJaA9DCNNKIZCL0XBAlIaUUpRoFU0fAWgWR0CheZcQ7LdOdX2UKGgGaAloD0MI+PvFbEkFbkCUhpRSlGgVS/BoFkdAoXn/nlnyu3V9lChoBmgJaA9DCBtK7UV0snFAlIaUUpRoFUv5aBZHQKF6IT0QK8d1fZQoaAZoCWgPQwgyA5Xxr81wQJSGlFKUaBVNEgFoFkdAoXohEroW6HV9lChoBmgJaA9DCO0PlNv2nnBAlIaUUpRoFUvcaBZHQKF6yzmfXf91fZQoaAZoCWgPQwgxKNNoctxxQJSGlFKUaBVL/GgWR0ChetumBOHndX2UKGgGaAloD0MIoP6z5geZckCUhpRSlGgVTSwBaBZHQKF7od7OVxF1fZQoaAZoCWgPQwj8xAH0ewBxQJSGlFKUaBVL22gWR0ChfDkPtlZpdX2UKGgGaAloD0MIyOvBpHjmcECUhpRSlGgVTQ4BaBZHQKF8o/C66J91fZQoaAZoCWgPQwiuRnalZVdbQJSGlFKUaBVN6ANoFkdAoXyull9SdnV9lChoBmgJaA9DCAx1WOFWmnBAlIaUUpRoFU0LAWgWR0ChfNH6dlNDdX2UKGgGaAloD0MIv/T25+IPc0CUhpRSlGgVTQoBaBZHQKF9Kz3RG+d1fZQoaAZoCWgPQwh8CoDxDO5xQJSGlFKUaBVL/GgWR0Chfb8feUILdX2UKGgGaAloD0MIhSUeULaGcUCUhpRSlGgVS9xoFkdAoX4YbVBlc3V9lChoBmgJaA9DCBB5y9VPjXFAlIaUUpRoFU0DAWgWR0ChfiMBp5/tdX2UKGgGaAloD0MI/G8lO/ZIckCUhpRSlGgVTTYBaBZHQKF+WPJaJRB1fZQoaAZoCWgPQwguOIO/38hwQJSGlFKUaBVL+GgWR0Chf+Rv3rUtdX2UKGgGaAloD0MI41KVtvg1cUCUhpRSlGgVTS8BaBZHQKGAY3irDIl1fZQoaAZoCWgPQwifqkIDsb1xQJSGlFKUaBVNMQFoFkdAoYBvkmx+rnV9lChoBmgJaA9DCMKht3j4unBAlIaUUpRoFU0TAWgWR0ChgHc3l0YCdX2UKGgGaAloD0MI3IR7Zd4lbUCUhpRSlGgVTQQBaBZHQKGA+1ejVQR1fZQoaAZoCWgPQwhCIQIO4fFwQJSGlFKUaBVNAgFoFkdAoYGLEm6XjXV9lChoBmgJaA9DCB04Z0Rp8WhAlIaUUpRoFU3oA2gWR0ChgZEcsDnvdX2UKGgGaAloD0MIsz9QbhtwcECUhpRSlGgVS/JoFkdAoYHKMDOkcnV9lChoBmgJaA9DCCE+sOP/2HBAlIaUUpRoFU0KAWgWR0ChghiXpnpTdX2UKGgGaAloD0MIvXK9baaocUCUhpRSlGgVTQ0BaBZHQKGCHgLqlgt1fZQoaAZoCWgPQwhqhel7TXpxQJSGlFKUaBVL/WgWR0ChglK4H5aedX2UKGgGaAloD0MIi/m5oWmyc0CUhpRSlGgVS/FoFkdAoYLvhbW3B3V9lChoBmgJaA9DCMOf4c1amHBAlIaUUpRoFUv4aBZHQKGDLJNj9XN1fZQoaAZoCWgPQwgyj/zBQMdxQJSGlFKUaBVNFwFoFkdAoYMwwqRU3nV9lChoBmgJaA9DCP5D+u3rr25AlIaUUpRoFU0HAWgWR0ChgzhOYYzjdX2UKGgGaAloD0MI1H5rJ0oWTECUhpRSlGgVS6poFkdAoYNhiw0O3HV9lChoBmgJaA9DCAGloUYhh3FAlIaUUpRoFU3xAWgWR0Chg4uKoAGTdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 496, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2e4eb26ae2fea7cbd443daadc93ae9320a916c8eed4b08899cc90ec426026433
|
3 |
+
size 147360
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f28c5c48d30>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f28c5c48dc0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f28c5c48e50>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f28c5c48ee0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f28c5c48f70>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f28c5c4c040>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f28c5c4c0d0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f28c5c4c160>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f28c5c4c1f0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f28c5c4c280>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f28c5c4c310>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f28c5c4c3a0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f28c5c42cf0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 1015808,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1676829567314633022,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJql+TxT+rU/Wi7PPrlFP7x+kRQ7d4gDPgAAAAAAAAAAGhcBvfawebo8Hgm9p1c6vgr0Mr0ajkg+AACAPwAAAACaXs+8QYGfP7vL6L2N5Qa//be1vMDE5roAAAAAAAAAABppFj5t7BE/JiMgvtIyur76g5w9KHnavQAAAAAAAAAAAFIPPXEk8D6V8OO9Ck2rvqGhM7zRdI29AAAAAAAAAABm5HO9PZgKu0vMuLt69KQ8K88KPNLIjb0AAIA/AACAPwZ5OT5v3ZU/gdiWPvv4gb4KL74+LcDjPQAAAAAAAAAAGqghvaXvMT794BY9EbCGvtviMr1+RAK6AAAAAAAAAABmBta8uE6eOvziEj6JVPq9iai0PH49Lb8AAAAAAACAP5p8xb0m0RU/J02bPepNor4A30S9NWHvPQAAAAAAAAAAAOI2vkS6gD8W3Ri+H8YKv1itMr4QgbA8AAAAAAAAAADaLwM+T1cUPwQ+rr4PZd2+DxKhvPvjcr0AAAAAAAAAAIBt2D3ciZE/a1stPo9Msb5vSjA+XBKBPQAAAAAAAAAAGmDnPcBguT6FlXa+sjanvoEMrbw5iBK8AAAAAAAAAACaz0u9GWyTP+UPC756QQi/FF8lvYLG9L0AAAAAAAAAAMBrlb3tcaU+bCmmPSCrq74rzwk8NSOtvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.015808000000000044,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVURAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIy/Pg7ixGcUCUhpRSlIwBbJRNBQGMAXSUR0ChW5DdYW+HdX2UKGgGaAloD0MIAkcCDbaXcECUhpRSlGgVS+BoFkdAoVvVdzGPxXV9lChoBmgJaA9DCCJt40/UTnBAlIaUUpRoFUv0aBZHQKFdKZNwiq11fZQoaAZoCWgPQwj18dB3N6hwQJSGlFKUaBVNCAFoFkdAoV1ILNOdoXV9lChoBmgJaA9DCCbEXFL1JnBAlIaUUpRoFUv9aBZHQKFdoWHDaXd1fZQoaAZoCWgPQwiuRnal5f1xQJSGlFKUaBVL2WgWR0ChXarcTJyRdX2UKGgGaAloD0MImZoEb8ilbkCUhpRSlGgVTQwBaBZHQKFdyb/ffoB1fZQoaAZoCWgPQwhqT8k5cUtxQJSGlFKUaBVNDQFoFkdAoV4JRuTA33V9lChoBmgJaA9DCPZFQlsOYHJAlIaUUpRoFU0mAWgWR0ChXgn8jzI4dX2UKGgGaAloD0MISmHe48xfcUCUhpRSlGgVTQEBaBZHQKFenHf/FR51fZQoaAZoCWgPQwjzxklhnj1xQJSGlFKUaBVLz2gWR0ChXrew9q1xdX2UKGgGaAloD0MItMwiFNuYckCUhpRSlGgVS+poFkdAoV8Qjps41nV9lChoBmgJaA9DCDurBfZYxHFAlIaUUpRoFU0qAWgWR0ChX3JON5t4dX2UKGgGaAloD0MInX+77JfOcECUhpRSlGgVS/RoFkdAoV/YTIvJzXV9lChoBmgJaA9DCEw49BaPem9AlIaUUpRoFUv3aBZHQKFgCG3WnTB1fZQoaAZoCWgPQwh7TnrfuFFyQJSGlFKUaBVNFQFoFkdAoWDhffGdZ3V9lChoBmgJaA9DCHFXryIj5G5AlIaUUpRoFUvhaBZHQKFiOk0Jng51fZQoaAZoCWgPQwhE+1jBrypyQJSGlFKUaBVL+WgWR0ChYlLq2SdOdX2UKGgGaAloD0MIscQDyiaIcUCUhpRSlGgVTRIBaBZHQKFiWYyfthN1fZQoaAZoCWgPQwi/J9apMrpxQJSGlFKUaBVL/WgWR0ChYl+MZP2xdX2UKGgGaAloD0MIOLu1TIYmcECUhpRSlGgVTQ8BaBZHQKFiZUR3/xV1fZQoaAZoCWgPQwhD5sqg2ndyQJSGlFKUaBVNBwFoFkdAoWK3A/LTyHV9lChoBmgJaA9DCK5kx0ZgkHBAlIaUUpRoFUv+aBZHQKFiz47ihnJ1fZQoaAZoCWgPQwixUkFFlZtxQJSGlFKUaBVL62gWR0ChYzGcvugIdX2UKGgGaAloD0MI0Eaum9JtckCUhpRSlGgVS/loFkdAoWNVeyAxz3V9lChoBmgJaA9DCFUWhV2UjW9AlIaUUpRoFUvqaBZHQKFjiPZqVQh1fZQoaAZoCWgPQwi0keumVERyQJSGlFKUaBVNAgFoFkdAoWRiTdLxqnV9lChoBmgJaA9DCCL7IMtCNnBAlIaUUpRoFUv5aBZHQKFk7s3Q2Mt1fZQoaAZoCWgPQwj2XnzRHnlyQJSGlFKUaBVNCAFoFkdAoWUClFc6eXV9lChoBmgJaA9DCDXtYppp1XJAlIaUUpRoFUvyaBZHQKFldZ7HAAR1fZQoaAZoCWgPQwiSBre1hRBzQJSGlFKUaBVL5WgWR0ChZjANwzcidX2UKGgGaAloD0MIxomvdlQ9cUCUhpRSlGgVS/BoFkdAoWZS37UG3XV9lChoBmgJaA9DCA4WTtJ8mnFAlIaUUpRoFUvTaBZHQKFmj+AEt/Z1fZQoaAZoCWgPQwjHm/wW3dxyQJSGlFKUaBVNCgFoFkdAoWah4hUzbnV9lChoBmgJaA9DCKwCtRj8lXJAlIaUUpRoFU0GAWgWR0ChZqb3oLXudX2UKGgGaAloD0MI+fauQR8CckCUhpRSlGgVTQYBaBZHQKFmrbkfcN91fZQoaAZoCWgPQwhqoWRyqk1yQJSGlFKUaBVL/mgWR0ChZtgKF7D3dX2UKGgGaAloD0MIIjXtYlotckCUhpRSlGgVS/BoFkdAoWcNdeIEbHV9lChoBmgJaA9DCA+6hENvp2ZAlIaUUpRoFU3oA2gWR0ChZ5qTbFjvdX2UKGgGaAloD0MIJ9pVSLl3c0CUhpRSlGgVTRIBaBZHQKFnq11GLDR1fZQoaAZoCWgPQwhjYYicPjlwQJSGlFKUaBVL6WgWR0Chck6CDmKZdX2UKGgGaAloD0MI4297gsTfcECUhpRSlGgVTQoBaBZHQKFyV7SiM5x1fZQoaAZoCWgPQwgMeJlho3NzQJSGlFKUaBVNAQFoFkdAoXKhEnb7CXV9lChoBmgJaA9DCJBMh06PRnJAlIaUUpRoFUvyaBZHQKFy5xXnyNJ1fZQoaAZoCWgPQwiKkLqd/T5jQJSGlFKUaBVN6ANoFkdAoXLrR+jM3nV9lChoBmgJaA9DCHOfHAWI+nBAlIaUUpRoFUvbaBZHQKFzaFbmlqJ1fZQoaAZoCWgPQwj19BH4QyVwQJSGlFKUaBVL7mgWR0Chc46A4GUwdX2UKGgGaAloD0MI5/7qcZ/LcUCUhpRSlGgVS/ZoFkdAoXQvEOy3TnV9lChoBmgJaA9DCGHj+nd9zW9AlIaUUpRoFUvraBZHQKF0Qqfe1rt1fZQoaAZoCWgPQwjMtz6sd4VyQJSGlFKUaBVNAAFoFkdAoXRf0I1LrXV9lChoBmgJaA9DCOLkfoei1W9AlIaUUpRoFUvqaBZHQKF0eT2WY4R1fZQoaAZoCWgPQwj5Tsx68exyQJSGlFKUaBVNGgFoFkdAoXSwIt16mnV9lChoBmgJaA9DCAEydOygLHBAlIaUUpRoFUvUaBZHQKF1Rhx5s0p1fZQoaAZoCWgPQwjBcRk39R5xQJSGlFKUaBVNAQFoFkdAoXVVNFjNIXV9lChoBmgJaA9DCGzp0VTPLG9AlIaUUpRoFU0dAWgWR0ChdcvtMPBjdX2UKGgGaAloD0MIY30Dk1vPcUCUhpRSlGgVTRABaBZHQKF2KdOIqLF1fZQoaAZoCWgPQwh0z7pGC+1wQJSGlFKUaBVNAQFoFkdAoXY1mDlHSXV9lChoBmgJaA9DCOYGQx1WVnNAlIaUUpRoFUv7aBZHQKF2baPCEYh1fZQoaAZoCWgPQwjIef8fp+dyQJSGlFKUaBVNBQFoFkdAoXaWMCLde3V9lChoBmgJaA9DCFftmpCWc3JAlIaUUpRoFUvxaBZHQKF3BgCwKSh1fZQoaAZoCWgPQwhY4ZaPpJRwQJSGlFKUaBVNIQFoFkdAoXeQIUrTY3V9lChoBmgJaA9DCOBm8WLhq3FAlIaUUpRoFUv7aBZHQKF3wPCEYfp1fZQoaAZoCWgPQwiAETRmUsdyQJSGlFKUaBVL62gWR0CheAYzabnYdX2UKGgGaAloD0MIrDyBsJONcECUhpRSlGgVTQMBaBZHQKF4DBhx5s11fZQoaAZoCWgPQwj5n/zdu+BtQJSGlFKUaBVNHAFoFkdAoXhK9AX2unV9lChoBmgJaA9DCBMLfEW3TnFAlIaUUpRoFU0qAWgWR0CheLdE1EVndX2UKGgGaAloD0MITaJe8OkUbkCUhpRSlGgVS/ZoFkdAoXjiL0jC53V9lChoBmgJaA9DCNNKIZCL0XBAlIaUUpRoFU0fAWgWR0CheZcQ7LdOdX2UKGgGaAloD0MI+PvFbEkFbkCUhpRSlGgVS/BoFkdAoXn/nlnyu3V9lChoBmgJaA9DCBtK7UV0snFAlIaUUpRoFUv5aBZHQKF6IT0QK8d1fZQoaAZoCWgPQwgyA5Xxr81wQJSGlFKUaBVNEgFoFkdAoXohEroW6HV9lChoBmgJaA9DCO0PlNv2nnBAlIaUUpRoFUvcaBZHQKF6yzmfXf91fZQoaAZoCWgPQwgxKNNoctxxQJSGlFKUaBVL/GgWR0ChetumBOHndX2UKGgGaAloD0MIoP6z5geZckCUhpRSlGgVTSwBaBZHQKF7od7OVxF1fZQoaAZoCWgPQwj8xAH0ewBxQJSGlFKUaBVL22gWR0ChfDkPtlZpdX2UKGgGaAloD0MIyOvBpHjmcECUhpRSlGgVTQ4BaBZHQKF8o/C66J91fZQoaAZoCWgPQwiuRnalZVdbQJSGlFKUaBVN6ANoFkdAoXyull9SdnV9lChoBmgJaA9DCAx1WOFWmnBAlIaUUpRoFU0LAWgWR0ChfNH6dlNDdX2UKGgGaAloD0MIv/T25+IPc0CUhpRSlGgVTQoBaBZHQKF9Kz3RG+d1fZQoaAZoCWgPQwh8CoDxDO5xQJSGlFKUaBVL/GgWR0Chfb8feUILdX2UKGgGaAloD0MIhSUeULaGcUCUhpRSlGgVS9xoFkdAoX4YbVBlc3V9lChoBmgJaA9DCBB5y9VPjXFAlIaUUpRoFU0DAWgWR0ChfiMBp5/tdX2UKGgGaAloD0MI/G8lO/ZIckCUhpRSlGgVTTYBaBZHQKF+WPJaJRB1fZQoaAZoCWgPQwguOIO/38hwQJSGlFKUaBVL+GgWR0Chf+Rv3rUtdX2UKGgGaAloD0MI41KVtvg1cUCUhpRSlGgVTS8BaBZHQKGAY3irDIl1fZQoaAZoCWgPQwifqkIDsb1xQJSGlFKUaBVNMQFoFkdAoYBvkmx+rnV9lChoBmgJaA9DCMKht3j4unBAlIaUUpRoFU0TAWgWR0ChgHc3l0YCdX2UKGgGaAloD0MI3IR7Zd4lbUCUhpRSlGgVTQQBaBZHQKGA+1ejVQR1fZQoaAZoCWgPQwhCIQIO4fFwQJSGlFKUaBVNAgFoFkdAoYGLEm6XjXV9lChoBmgJaA9DCB04Z0Rp8WhAlIaUUpRoFU3oA2gWR0ChgZEcsDnvdX2UKGgGaAloD0MIsz9QbhtwcECUhpRSlGgVS/JoFkdAoYHKMDOkcnV9lChoBmgJaA9DCCE+sOP/2HBAlIaUUpRoFU0KAWgWR0ChghiXpnpTdX2UKGgGaAloD0MIvXK9baaocUCUhpRSlGgVTQ0BaBZHQKGCHgLqlgt1fZQoaAZoCWgPQwhqhel7TXpxQJSGlFKUaBVL/WgWR0ChglK4H5aedX2UKGgGaAloD0MIi/m5oWmyc0CUhpRSlGgVS/FoFkdAoYLvhbW3B3V9lChoBmgJaA9DCMOf4c1amHBAlIaUUpRoFUv4aBZHQKGDLJNj9XN1fZQoaAZoCWgPQwgyj/zBQMdxQJSGlFKUaBVNFwFoFkdAoYMwwqRU3nV9lChoBmgJaA9DCP5D+u3rr25AlIaUUpRoFU0HAWgWR0ChgzhOYYzjdX2UKGgGaAloD0MI1H5rJ0oWTECUhpRSlGgVS6poFkdAoYNhiw0O3HV9lChoBmgJaA9DCAGloUYhh3FAlIaUUpRoFU3xAWgWR0Chg4uKoAGTdWUu"
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 496,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1a275ce48112deaf4dbd0d4cd5db08243498bf2572667116bef2d94ff3c4d97d
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5ba51aea0962d30aba59d27039c53a471a062cd9ac401027f941050b0faf9ad4
|
3 |
+
size 43393
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (190 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 272.0512207510827, "std_reward": 14.648331971919808, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-19T18:16:07.114242"}
|