## City-Country-NER A `bert-base-uncased` model finetuned on a custom dataset to detect `Country` and `City` names from a given sentence. ### Custom Dataset We weakly supervised the `Ultra-Fine Entity Typing[https://www.cs.utexas.edu/~eunsol/html_pages/open_entity.html]` dataset to include the `City` and `Country` information. We also did some extra preprocessing to remove false labels. The model predicts 3 different tags: | **Predicted Tag**| **Meaning** | |------------------|-------------| | LABEL_0 | Others | | LABEL_2 | Country | | LABEL_3 | City | ### How to use the finetuned model? ``` from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("ml6team/bert-base-uncased-city-country-ner", use_auth_token=True) model = AutoModelForTokenClassification.from_pretrained("ml6team/bert-base-uncased-city-country-ner", use_auth_token=True) from transformers import pipeline nlp = pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy="simple") nlp("My name is Kermit and I live in London.") ```