Update README.md
Browse files
README.md
CHANGED
@@ -1,201 +1,99 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
#
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
##
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
200 |
-
|
201 |
-
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
extra_gated_heading: Access Gemma on Hugging Face
|
4 |
+
extra_gated_prompt: >-
|
5 |
+
To access Gemma on Hugging Face, you’re required to review and agree to
|
6 |
+
Google’s usage license. To do this, please ensure you’re logged-in to Hugging
|
7 |
+
Face and click below. Requests are processed immediately.
|
8 |
+
extra_gated_button_content: Acknowledge license
|
9 |
+
license: other
|
10 |
+
license_name: gemma-terms-of-use
|
11 |
+
license_link: https://ai.google.dev/gemma/terms
|
12 |
+
base_model:
|
13 |
+
- google/gemma-2b
|
14 |
+
datasets:
|
15 |
+
- vicgalle/alpaca-gpt4
|
16 |
---
|
17 |
|
18 |
+
# Gemmalpaca-2B
|
19 |
+
|
20 |
+
This is gemma-2b model supervised fine-tuned on the [vicgalle/alpaca-gpt4](https://huggingface.co/datasets/vicgalle/alpaca-gpt4) dataset.
|
21 |
+
|
22 |
+
It's mostly a test to see how fine-tuning works with Gemma models on a well-known dataset.
|
23 |
+
|
24 |
+
## 🧩 Configuration
|
25 |
+
|
26 |
+
It was trained using [Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl) with the following configuration.
|
27 |
+
|
28 |
+
```yaml
|
29 |
+
base_model: alpindale/gemma-2b
|
30 |
+
model_type: GemmaForCausalLM
|
31 |
+
tokenizer_type: GemmaTokenizer
|
32 |
+
|
33 |
+
load_in_8bit: false
|
34 |
+
load_in_4bit: true
|
35 |
+
strict: false
|
36 |
+
|
37 |
+
datasets:
|
38 |
+
- path: vicgalle/alpaca-gpt4
|
39 |
+
type: alpaca
|
40 |
+
|
41 |
+
dataset_prepared_path:
|
42 |
+
val_set_size: 0.01
|
43 |
+
output_dir: ./out
|
44 |
+
|
45 |
+
sequence_len: 2048
|
46 |
+
sample_packing: true
|
47 |
+
pad_to_sequence_len: true
|
48 |
+
|
49 |
+
adapter: qlora
|
50 |
+
lora_model_dir:
|
51 |
+
lora_r: 32
|
52 |
+
lora_alpha: 64
|
53 |
+
lora_dropout: 0.05
|
54 |
+
lora_target_linear: true
|
55 |
+
|
56 |
+
wandb_project: axolotl
|
57 |
+
wandb_entity:
|
58 |
+
wandb_watch:
|
59 |
+
wandb_name:
|
60 |
+
wandb_log_model:
|
61 |
+
|
62 |
+
gradient_accumulation_steps: 4
|
63 |
+
micro_batch_size: 2
|
64 |
+
num_epochs: 3
|
65 |
+
optimizer: adamw_bnb_8bit
|
66 |
+
lr_scheduler: cosine
|
67 |
+
learning_rate: 0.0002
|
68 |
+
|
69 |
+
train_on_inputs: false
|
70 |
+
group_by_length: false
|
71 |
+
bf16: auto
|
72 |
+
fp16:
|
73 |
+
tf32: false
|
74 |
+
|
75 |
+
gradient_checkpointing: true
|
76 |
+
early_stopping_patience:
|
77 |
+
resume_from_checkpoint:
|
78 |
+
local_rank:
|
79 |
+
logging_steps: 1
|
80 |
+
xformers_attention:
|
81 |
+
flash_attention:
|
82 |
+
|
83 |
+
warmup_steps: 10
|
84 |
+
evals_per_epoch: 4
|
85 |
+
eval_table_size:
|
86 |
+
eval_table_max_new_tokens: 128
|
87 |
+
saves_per_epoch: 1
|
88 |
+
debug:
|
89 |
+
deepspeed:
|
90 |
+
weight_decay: 0.1
|
91 |
+
fsdp:
|
92 |
+
fsdp_config:
|
93 |
+
special_tokens:
|
94 |
+
bos_token: <s>
|
95 |
+
eos_token: </s>
|
96 |
+
unk_token: <unk>
|
97 |
+
```
|
98 |
+
|
99 |
+
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|