---
license: other
library_name: transformers
datasets:
- vicgalle/alpaca-gpt4
extra_gated_heading: Access Gemma on Hugging Face
extra_gated_prompt: To access Gemma on Hugging Face, you’re required to review and
agree to Google’s usage license. To do this, please ensure you’re logged-in to Hugging
Face and click below. Requests are processed immediately.
extra_gated_button_content: Acknowledge license
license_name: gemma-terms-of-use
license_link: https://ai.google.dev/gemma/terms
base_model:
- google/gemma-2b
model-index:
- name: Gemmalpaca-2B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 48.72
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Gemmalpaca-2B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 71.36
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Gemmalpaca-2B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 36.3
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Gemmalpaca-2B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 41.24
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Gemmalpaca-2B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 65.59
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Gemmalpaca-2B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 10.69
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Gemmalpaca-2B
name: Open LLM Leaderboard
---
![image/webp](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/uwPjZeV-JQwKWrI7nHg4w.webp)
# Gemmalpaca-2B
This is gemma-2b model supervised fine-tuned on the [vicgalle/alpaca-gpt4](https://huggingface.co/datasets/vicgalle/alpaca-gpt4) dataset. It outperforms gemma-2b-it, Google's chat version, on Nous' benchmark suite.
It's mostly a test to see how fine-tuning works with Gemma models on a well-known dataset. It turned out better than expected. :)
## 🔍 Applications
This model has a context length of 8k. I recommend using it with the Alpaca chat template and NOT the Gemma Instruct template (works perfectly with LM Studio). You also want to add `` as a stop token.
## ⚡ Quantized models
* **GGUF**: https://huggingface.co/mlabonne/Gemmalpaca-2B-GGUF
## 🏆 Evaluation
### Nous
Gemmalpaca-2B outperforms gemma-2b and gemma-2b-it on Nous' benchmark suite (evaluation performed using [LLM AutoEval](https://github.com/mlabonne/llm-autoeval)). See the entire leaderboard [here](https://huggingface.co/spaces/mlabonne/Yet_Another_LLM_Leaderboard).
| Model | Average | AGIEval | GPT4All | TruthfulQA | Bigbench |
|---|---:|---:|---:|---:|---:|
| [mlabonne/Gemmalpaca-2B](https://huggingface.co/mlabonne/Gemmalpaca-2B) [📄](https://gist.github.com/mlabonne/4b638752fc3227df566f9562064cb864) | 38.39 | 24.48 | 51.22 | 47.02 | 30.85 |
| [google/gemma-2b-it](https://huggingface.co/google/gemma-2b-it) [📄](https://gist.github.com/mlabonne/db0761e74175573292acf497da9e5d95) | 36.1 | 23.76 | 43.6 | 47.64 | 29.41 |
| [google/gemma-2b](https://huggingface.co/google/gemma-2b) [📄](https://gist.github.com/mlabonne/7df1f238c515a5f63a750c8792cef59e) | 34.26 | 22.7 | 43.35 | 39.96 | 31.03 |
## 🧩 Configuration
It was trained using [Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl) with the following configuration.
```yaml
base_model: alpindale/gemma-2b
model_type: GemmaForCausalLM
tokenizer_type: GemmaTokenizer
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: vicgalle/alpaca-gpt4
type: alpaca
dataset_prepared_path:
val_set_size: 0.01
output_dir: ./out
sequence_len: 2048
sample_packing: true
pad_to_sequence_len: true
adapter: qlora
lora_model_dir:
lora_r: 32
lora_alpha: 64
lora_dropout: 0.05
lora_target_linear: true
wandb_project: axolotl
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 3
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention:
warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_table_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.1
fsdp:
fsdp_config:
special_tokens:
bos_token:
eos_token:
unk_token:
```
[](https://github.com/OpenAccess-AI-Collective/axolotl)
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_mlabonne__Gemmalpaca-2B)
| Metric |Value|
|---------------------------------|----:|
|Avg. |45.65|
|AI2 Reasoning Challenge (25-Shot)|48.72|
|HellaSwag (10-Shot) |71.36|
|MMLU (5-Shot) |36.30|
|TruthfulQA (0-shot) |41.24|
|Winogrande (5-shot) |65.59|
|GSM8k (5-shot) |10.69|