mlabonne commited on
Commit
53c6128
β€’
1 Parent(s): 33f76dd

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +10 -2
README.md CHANGED
@@ -14,17 +14,19 @@ tags:
14
 
15
  # NeuralBeagle14-7B
16
 
 
 
17
  NeuralBeagle14-7B is a DPO fine-tune of [mlabonne/Beagle14-7B](https://huggingface.co/mlabonne/Beagle14-7B) using the [argilla/distilabel-intel-orca-dpo-pairs](https://huggingface.co/datasets/argilla/distilabel-intel-orca-dpo-pairs) preference dataset and my DPO notebook from [this article](https://towardsdatascience.com/fine-tune-a-mistral-7b-model-with-direct-preference-optimization-708042745aac).
18
 
19
  Thanks [Argilla](https://huggingface.co/argilla) for providing the dataset and the training recipe [here](https://huggingface.co/argilla/distilabeled-Marcoro14-7B-slerp). πŸ’ͺ
20
 
21
  ## πŸ† Evaluation
22
 
23
- The evaluation was performed using [LLM AutoEval](https://github.com/mlabonne/llm-autoeval) on Nous suite.
24
 
25
  | Model | Average | AGIEval | GPT4All | TruthfulQA | Bigbench |
26
  |---|---:|---:|---:|---:|---:|
27
- |[**Beagle14-7B**](https://huggingface.co/mlabonne/Beagle14-7B)| ****| ****| ****| ****| ****|
28
  | [mlabonne/Beagle14-7B](https://huggingface.co/mlabonne/Beagle14-7B) [πŸ“„](https://gist.github.com/mlabonne/f5a5bf8c0827bbec2f05b97cc62d642c) | 59.4 | 44.38 | 76.53 | 69.44 | 47.25 |
29
  | [mlabonne/NeuralDaredevil-7B](https://huggingface.co/mlabonne/NeuralDaredevil-7B) [πŸ“„](https://gist.github.com/mlabonne/cbeb077d1df71cb81c78f742f19f4155) | 59.39 | 45.23 | 76.2 | 67.61 | 48.52 |
30
  | [argilla/distilabeled-Marcoro14-7B-slerp](https://huggingface.co/argilla/distilabeled-Marcoro14-7B-slerp) [πŸ“„](https://gist.github.com/mlabonne/9082c4e59f4d3f3543c5eda3f4807040) | 58.93 | 45.38 | 76.48 | 65.68 | 48.18 |
@@ -34,6 +36,12 @@ The evaluation was performed using [LLM AutoEval](https://github.com/mlabonne/ll
34
 
35
  You can find the complete benchmark on [YALL - Yet Another LLM Leaderboard](https://huggingface.co/spaces/mlabonne/Yet_Another_LLM_Leaderboard).
36
 
 
 
 
 
 
 
37
  ## πŸ’» Usage
38
 
39
  ```python
 
14
 
15
  # NeuralBeagle14-7B
16
 
17
+ **Update 01/16/24: NeuralBeagle14-7B is probably the best 7B model you can find. πŸŽ‰**
18
+
19
  NeuralBeagle14-7B is a DPO fine-tune of [mlabonne/Beagle14-7B](https://huggingface.co/mlabonne/Beagle14-7B) using the [argilla/distilabel-intel-orca-dpo-pairs](https://huggingface.co/datasets/argilla/distilabel-intel-orca-dpo-pairs) preference dataset and my DPO notebook from [this article](https://towardsdatascience.com/fine-tune-a-mistral-7b-model-with-direct-preference-optimization-708042745aac).
20
 
21
  Thanks [Argilla](https://huggingface.co/argilla) for providing the dataset and the training recipe [here](https://huggingface.co/argilla/distilabeled-Marcoro14-7B-slerp). πŸ’ͺ
22
 
23
  ## πŸ† Evaluation
24
 
25
+ The evaluation was performed using [LLM AutoEval](https://github.com/mlabonne/llm-autoeval) on Nous suite. It is the best 7B model to date.
26
 
27
  | Model | Average | AGIEval | GPT4All | TruthfulQA | Bigbench |
28
  |---|---:|---:|---:|---:|---:|
29
+ | [**mlabonne/NeuralBeagle14-7B**](https://huggingface.co/mlabonne/NeuralBeagle14-7B) [πŸ“„](https://gist.github.com/mlabonne/ad0c665bbe581c8420136c3b52b3c15c) | **60.25** | **46.06** | **76.77** | **70.32** | **47.86** |
30
  | [mlabonne/Beagle14-7B](https://huggingface.co/mlabonne/Beagle14-7B) [πŸ“„](https://gist.github.com/mlabonne/f5a5bf8c0827bbec2f05b97cc62d642c) | 59.4 | 44.38 | 76.53 | 69.44 | 47.25 |
31
  | [mlabonne/NeuralDaredevil-7B](https://huggingface.co/mlabonne/NeuralDaredevil-7B) [πŸ“„](https://gist.github.com/mlabonne/cbeb077d1df71cb81c78f742f19f4155) | 59.39 | 45.23 | 76.2 | 67.61 | 48.52 |
32
  | [argilla/distilabeled-Marcoro14-7B-slerp](https://huggingface.co/argilla/distilabeled-Marcoro14-7B-slerp) [πŸ“„](https://gist.github.com/mlabonne/9082c4e59f4d3f3543c5eda3f4807040) | 58.93 | 45.38 | 76.48 | 65.68 | 48.18 |
 
36
 
37
  You can find the complete benchmark on [YALL - Yet Another LLM Leaderboard](https://huggingface.co/spaces/mlabonne/Yet_Another_LLM_Leaderboard).
38
 
39
+ It's also on top of the Open LLM Leaderboard:
40
+
41
+ ![](https://i.imgur.com/62gUTFn.png)
42
+
43
+ Compared to Beagle14, there's no improvement in this benchmark. This might be due to an unlucky run, but I think I might be overexploiting argilla/distilabel-intel-orca-dpo-pairs at this point. Another preference dataset could improve it even further. Note that the Beagle models perform better than Turdus, which is purposely contaminated on Winogrande (very high score).
44
+
45
  ## πŸ’» Usage
46
 
47
  ```python