--- datasets: - mlabonne/orpo-dpo-mix-40k license: other tags: - dpo - autoquant - exl2 model-index: - name: Daredevil-8B-abliterated-dpomix results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 69.28 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Daredevil-8B-abliterated-dpomix name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 85.05 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Daredevil-8B-abliterated-dpomix name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 69.1 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Daredevil-8B-abliterated-dpomix name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 60.0 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Daredevil-8B-abliterated-dpomix name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 78.69 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Daredevil-8B-abliterated-dpomix name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 71.8 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Daredevil-8B-abliterated-dpomix name: Open LLM Leaderboard --- # NeuralDaredevil-8B-abliterated ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/gFEhcIDSKa3AWpkNfH91q.jpeg) This is a DPO fine-tune of [mlabonne/Daredevil-8-abliterated](https://huggingface.co/mlabonne/Daredevil-8B-abliterated), trained on one epoch of [mlabonne/orpo-dpo-mix-40k](https://huggingface.co/datasets/mlabonne/orpo-dpo-mix-40k). The DPO fine-tuning successfully recovers the performance loss due to the abliteration process, making it an excellent uncensored model. ## 🔎 Applications NeuralDaredevil-8B-abliterated performs better than the Instruct model on my tests. You can use it for any application that doesn't require alignment, like role-playing. Tested on LM Studio using the "Llama 3" and "Llama 3 v2" presets. ## ⚡ Quantization Thanks to QuantFactory, ZeroWw, Zoyd, solidrust, and tarruda for providing these quants. * **GGUF**: https://huggingface.co/QuantFactory/NeuralDaredevil-8B-abliterated-GGUF * **GGUF (FP16)**: https://huggingface.co/ZeroWw/NeuralDaredevil-8B-abliterated-GGUF * **EXL2**: https://huggingface.co/Zoyd/mlabonne_NeuralDaredevil-8B-abliterated-4_0bpw_exl2 * **AWQ**: https://huggingface.co/solidrust/NeuralDaredevil-8B-abliterated-AWQ * **ollama**: * **16-bit**: https://ollama.com/tarruda/neuraldaredevil-8b-abliterated * **8-bit**: https://ollama.com/lstep/neuraldaredevil-8b-abliterated * **5-bit**: https://ollama.com/closex/neuraldaredevil-8b-abliterated ## 🏆 Evaluation ### Open LLM Leaderboard NeuralDaredevil-8B is the best-performing uncensored 8B model on the Open LLM Leaderboard (MMLU score). ![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/HQtd51mJfVRhJ0lJFLceM.png) ### Nous Evaluation performed using [LLM AutoEval](https://github.com/mlabonne/llm-autoeval). See the entire leaderboard [here](https://huggingface.co/spaces/mlabonne/Yet_Another_LLM_Leaderboard). | Model | Average | AGIEval | GPT4All | TruthfulQA | Bigbench | |---|---:|---:|---:|---:|---:| | [**mlabonne/NeuralDaredevil-8B-abliterated**](https://huggingface.co/mlabonne/NeuralDaredevil-8B-abliterated) [📄](https://gist.github.com/mlabonne/ae0bf16936cef900b72964b33c99edbc) | **55.87** | **43.73** | **73.6** | **59.36** | **46.8** | | [mlabonne/Daredevil-8B](https://huggingface.co/mlabonne/Daredevil-8B) [📄](https://gist.github.com/mlabonne/080f9c5f153ea57a7ab7d932cf896f21) | 55.87 | 44.13 | 73.52 | 59.05 | 46.77 | | [mlabonne/Daredevil-8B-abliterated](https://huggingface.co/mlabonne/Daredevil-8B-abliterated) [📄](https://gist.github.com/mlabonne/32cdd8460804662c856bcb2a20acd49e) | 55.06 | 43.29 | 73.33 | 57.47 | 46.17 | | [NousResearch/Hermes-2-Theta-Llama-3-8B](https://huggingface.co/NousResearch/Hermes-2-Theta-Llama-3-8B) [📄](https://gist.github.com/mlabonne/5df2a3051dd6eb3368a77b684635dc05) | 54.28 | 43.9 | 72.62 | 56.36 | 44.23 | | [openchat/openchat-3.6-8b-20240522](https://huggingface.co/openchat/openchat-3.6-8b-20240522) [📄](https://gist.github.com/mlabonne/95eef8e8d26b7b17910dcb78e1c95f4a) | 53.49 | 44.03 | 73.67 | 49.78 | 46.48 | | [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) [📄](https://gist.github.com/mlabonne/8329284d86035e6019edb11eb0933628) | 51.34 | 41.22 | 69.86 | 51.65 | 42.64 | | [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) [📄](https://gist.github.com/mlabonne/616b6245137a9cfc4ea80e4c6e55d847) | 45.42 | 31.1 | 69.95 | 43.91 | 36.7 | ## 🌳 Model family tree ![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/ekwRGgnjzEOyprT8sEBFt.png) ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "mlabonne/Daredevil-8B" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```