gsmyrnis commited on
Commit
a8a3839
1 Parent(s): 9468a88

Training in progress, epoch 3

Browse files
model-00001-of-00004.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:604556d485dc5afc157d039f94c40846350c83fc8e3388c46a42973fbfb94c62
3
  size 4976698672
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2ab7eeeb011b4d83cd68528f7efcf8d5204999ccd5ddf3feb9598f3ef8ad3c77
3
  size 4976698672
model-00002-of-00004.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f65a5b58a27586165880b98db3d71e507f4afe4c6dabac884d4aa95392a0e5a2
3
  size 4999802720
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5ef6f49fd76b84a7fd17bcf6bd403c85236a11476296ef02079228c277279bcd
3
  size 4999802720
model-00003-of-00004.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:642764ab1db041e6dd72b4ddee86e501e6de624835e78f56eaed9225b28a3cce
3
  size 4915916176
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:36b7d138aeef3387d65d048035feeb45198e3e1819f11bf8bf16b8e3038addb9
3
  size 4915916176
model-00004-of-00004.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:67dd416633b0d40f20f5e83d3c96726fbce914fec63b0f1458ece3920dbbc4f1
3
  size 1168138808
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f12ec57c21d8a989b3a1d8889759493e02ceade130047d4ad2915f5aa2e19647
3
  size 1168138808
trainer_log.jsonl CHANGED
@@ -81,3 +81,41 @@
81
  {"current_steps": 790, "total_steps": 1179, "loss": 0.4964, "learning_rate": 5e-06, "epoch": 2.010178117048346, "percentage": 67.01, "elapsed_time": "1:30:31", "remaining_time": "0:44:34"}
82
  {"current_steps": 800, "total_steps": 1179, "loss": 0.4699, "learning_rate": 5e-06, "epoch": 2.035623409669211, "percentage": 67.85, "elapsed_time": "1:31:34", "remaining_time": "0:43:22"}
83
  {"current_steps": 810, "total_steps": 1179, "loss": 0.4747, "learning_rate": 5e-06, "epoch": 2.0610687022900764, "percentage": 68.7, "elapsed_time": "1:32:36", "remaining_time": "0:42:11"}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81
  {"current_steps": 790, "total_steps": 1179, "loss": 0.4964, "learning_rate": 5e-06, "epoch": 2.010178117048346, "percentage": 67.01, "elapsed_time": "1:30:31", "remaining_time": "0:44:34"}
82
  {"current_steps": 800, "total_steps": 1179, "loss": 0.4699, "learning_rate": 5e-06, "epoch": 2.035623409669211, "percentage": 67.85, "elapsed_time": "1:31:34", "remaining_time": "0:43:22"}
83
  {"current_steps": 810, "total_steps": 1179, "loss": 0.4747, "learning_rate": 5e-06, "epoch": 2.0610687022900764, "percentage": 68.7, "elapsed_time": "1:32:36", "remaining_time": "0:42:11"}
84
+ {"current_steps": 820, "total_steps": 1179, "loss": 0.4731, "learning_rate": 5e-06, "epoch": 2.0865139949109412, "percentage": 69.55, "elapsed_time": "1:33:38", "remaining_time": "0:40:59"}
85
+ {"current_steps": 830, "total_steps": 1179, "loss": 0.481, "learning_rate": 5e-06, "epoch": 2.1119592875318065, "percentage": 70.4, "elapsed_time": "1:34:40", "remaining_time": "0:39:48"}
86
+ {"current_steps": 840, "total_steps": 1179, "loss": 0.472, "learning_rate": 5e-06, "epoch": 2.1374045801526718, "percentage": 71.25, "elapsed_time": "1:35:43", "remaining_time": "0:38:37"}
87
+ {"current_steps": 850, "total_steps": 1179, "loss": 0.4788, "learning_rate": 5e-06, "epoch": 2.162849872773537, "percentage": 72.09, "elapsed_time": "1:36:45", "remaining_time": "0:37:27"}
88
+ {"current_steps": 860, "total_steps": 1179, "loss": 0.4787, "learning_rate": 5e-06, "epoch": 2.188295165394402, "percentage": 72.94, "elapsed_time": "1:37:47", "remaining_time": "0:36:16"}
89
+ {"current_steps": 870, "total_steps": 1179, "loss": 0.4785, "learning_rate": 5e-06, "epoch": 2.213740458015267, "percentage": 73.79, "elapsed_time": "1:38:50", "remaining_time": "0:35:06"}
90
+ {"current_steps": 880, "total_steps": 1179, "loss": 0.4817, "learning_rate": 5e-06, "epoch": 2.2391857506361323, "percentage": 74.64, "elapsed_time": "1:39:52", "remaining_time": "0:33:56"}
91
+ {"current_steps": 890, "total_steps": 1179, "loss": 0.4732, "learning_rate": 5e-06, "epoch": 2.2646310432569976, "percentage": 75.49, "elapsed_time": "1:40:54", "remaining_time": "0:32:46"}
92
+ {"current_steps": 900, "total_steps": 1179, "loss": 0.4742, "learning_rate": 5e-06, "epoch": 2.2900763358778624, "percentage": 76.34, "elapsed_time": "1:41:56", "remaining_time": "0:31:36"}
93
+ {"current_steps": 910, "total_steps": 1179, "loss": 0.4725, "learning_rate": 5e-06, "epoch": 2.3155216284987277, "percentage": 77.18, "elapsed_time": "1:42:59", "remaining_time": "0:30:26"}
94
+ {"current_steps": 920, "total_steps": 1179, "loss": 0.4793, "learning_rate": 5e-06, "epoch": 2.340966921119593, "percentage": 78.03, "elapsed_time": "1:44:01", "remaining_time": "0:29:17"}
95
+ {"current_steps": 930, "total_steps": 1179, "loss": 0.4735, "learning_rate": 5e-06, "epoch": 2.366412213740458, "percentage": 78.88, "elapsed_time": "1:45:03", "remaining_time": "0:28:07"}
96
+ {"current_steps": 940, "total_steps": 1179, "loss": 0.4728, "learning_rate": 5e-06, "epoch": 2.391857506361323, "percentage": 79.73, "elapsed_time": "1:46:06", "remaining_time": "0:26:58"}
97
+ {"current_steps": 950, "total_steps": 1179, "loss": 0.4785, "learning_rate": 5e-06, "epoch": 2.4173027989821882, "percentage": 80.58, "elapsed_time": "1:47:08", "remaining_time": "0:25:49"}
98
+ {"current_steps": 960, "total_steps": 1179, "loss": 0.4748, "learning_rate": 5e-06, "epoch": 2.4427480916030535, "percentage": 81.42, "elapsed_time": "1:48:10", "remaining_time": "0:24:40"}
99
+ {"current_steps": 970, "total_steps": 1179, "loss": 0.4752, "learning_rate": 5e-06, "epoch": 2.4681933842239188, "percentage": 82.27, "elapsed_time": "1:49:13", "remaining_time": "0:23:31"}
100
+ {"current_steps": 980, "total_steps": 1179, "loss": 0.4743, "learning_rate": 5e-06, "epoch": 2.4936386768447836, "percentage": 83.12, "elapsed_time": "1:50:15", "remaining_time": "0:22:23"}
101
+ {"current_steps": 990, "total_steps": 1179, "loss": 0.4743, "learning_rate": 5e-06, "epoch": 2.519083969465649, "percentage": 83.97, "elapsed_time": "1:51:17", "remaining_time": "0:21:14"}
102
+ {"current_steps": 1000, "total_steps": 1179, "loss": 0.4742, "learning_rate": 5e-06, "epoch": 2.544529262086514, "percentage": 84.82, "elapsed_time": "1:52:19", "remaining_time": "0:20:06"}
103
+ {"current_steps": 1010, "total_steps": 1179, "loss": 0.4734, "learning_rate": 5e-06, "epoch": 2.569974554707379, "percentage": 85.67, "elapsed_time": "1:53:22", "remaining_time": "0:18:58"}
104
+ {"current_steps": 1020, "total_steps": 1179, "loss": 0.4758, "learning_rate": 5e-06, "epoch": 2.595419847328244, "percentage": 86.51, "elapsed_time": "1:54:24", "remaining_time": "0:17:50"}
105
+ {"current_steps": 1030, "total_steps": 1179, "loss": 0.474, "learning_rate": 5e-06, "epoch": 2.6208651399491094, "percentage": 87.36, "elapsed_time": "1:55:26", "remaining_time": "0:16:42"}
106
+ {"current_steps": 1040, "total_steps": 1179, "loss": 0.4792, "learning_rate": 5e-06, "epoch": 2.6463104325699747, "percentage": 88.21, "elapsed_time": "1:56:29", "remaining_time": "0:15:34"}
107
+ {"current_steps": 1050, "total_steps": 1179, "loss": 0.4721, "learning_rate": 5e-06, "epoch": 2.67175572519084, "percentage": 89.06, "elapsed_time": "1:57:31", "remaining_time": "0:14:26"}
108
+ {"current_steps": 1060, "total_steps": 1179, "loss": 0.4731, "learning_rate": 5e-06, "epoch": 2.6972010178117047, "percentage": 89.91, "elapsed_time": "1:58:33", "remaining_time": "0:13:18"}
109
+ {"current_steps": 1070, "total_steps": 1179, "loss": 0.475, "learning_rate": 5e-06, "epoch": 2.72264631043257, "percentage": 90.75, "elapsed_time": "1:59:35", "remaining_time": "0:12:11"}
110
+ {"current_steps": 1080, "total_steps": 1179, "loss": 0.4822, "learning_rate": 5e-06, "epoch": 2.7480916030534353, "percentage": 91.6, "elapsed_time": "2:00:38", "remaining_time": "0:11:03"}
111
+ {"current_steps": 1090, "total_steps": 1179, "loss": 0.4738, "learning_rate": 5e-06, "epoch": 2.7735368956743, "percentage": 92.45, "elapsed_time": "2:01:40", "remaining_time": "0:09:56"}
112
+ {"current_steps": 1100, "total_steps": 1179, "loss": 0.4709, "learning_rate": 5e-06, "epoch": 2.7989821882951653, "percentage": 93.3, "elapsed_time": "2:02:42", "remaining_time": "0:08:48"}
113
+ {"current_steps": 1110, "total_steps": 1179, "loss": 0.4692, "learning_rate": 5e-06, "epoch": 2.8244274809160306, "percentage": 94.15, "elapsed_time": "2:03:45", "remaining_time": "0:07:41"}
114
+ {"current_steps": 1120, "total_steps": 1179, "loss": 0.4767, "learning_rate": 5e-06, "epoch": 2.849872773536896, "percentage": 95.0, "elapsed_time": "2:04:47", "remaining_time": "0:06:34"}
115
+ {"current_steps": 1130, "total_steps": 1179, "loss": 0.478, "learning_rate": 5e-06, "epoch": 2.875318066157761, "percentage": 95.84, "elapsed_time": "2:05:49", "remaining_time": "0:05:27"}
116
+ {"current_steps": 1140, "total_steps": 1179, "loss": 0.4745, "learning_rate": 5e-06, "epoch": 2.900763358778626, "percentage": 96.69, "elapsed_time": "2:06:51", "remaining_time": "0:04:20"}
117
+ {"current_steps": 1150, "total_steps": 1179, "loss": 0.4725, "learning_rate": 5e-06, "epoch": 2.926208651399491, "percentage": 97.54, "elapsed_time": "2:07:54", "remaining_time": "0:03:13"}
118
+ {"current_steps": 1160, "total_steps": 1179, "loss": 0.4744, "learning_rate": 5e-06, "epoch": 2.9516539440203564, "percentage": 98.39, "elapsed_time": "2:08:56", "remaining_time": "0:02:06"}
119
+ {"current_steps": 1170, "total_steps": 1179, "loss": 0.4766, "learning_rate": 5e-06, "epoch": 2.9770992366412212, "percentage": 99.24, "elapsed_time": "2:09:58", "remaining_time": "0:00:59"}
120
+ {"current_steps": 1179, "total_steps": 1179, "eval_loss": 0.5409571528434753, "epoch": 3.0, "percentage": 100.0, "elapsed_time": "2:15:04", "remaining_time": "0:00:00"}
121
+ {"current_steps": 1179, "total_steps": 1179, "epoch": 3.0, "percentage": 100.0, "elapsed_time": "2:18:19", "remaining_time": "0:00:00"}