Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- README.md +32 -0
- img/splash_figure_alt.png +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
img/splash_figure_alt.png filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -1,3 +1,35 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
---
|
4 |
+
# Aligning Touch, Vision, and Language for Multimodal Perception
|
5 |
+
by <a href="https://max-fu.github.io">Max (Letian) Fu</a>, <a href="https://www.linkedin.com/in/gaurav-datta/">Gaurav Datta*</a>, <a href="https://qingh097.github.io/">Huang Huang*</a>, <a href="https://autolab.berkeley.edu/people">William Chung-Ho Panitch*</a>, <a href="https://www.linkedin.com/in/jaimyn-drake/">Jaimyn Drake*</a>, <a href="https://joeaortiz.github.io/">Joseph Ortiz</a>, <a href="https://www.mustafamukadam.com/">Mustafa Mukadam</a>, <a href="https://scholar.google.com/citations?user=p6DCMrQAAAAJ&hl=en">Mike Lambeta</a>, <a href="https://lasr.org/">Roberto Calandra</a>, <a href="https://goldberg.berkeley.edu">Ken Goldberg</a> at UC Berkeley, Meta AI, and TU Dresden
|
6 |
+
|
7 |
+
[[Paper](#todo)] | [[Project Page](https://tvl.github.io/)] | [[Citation](#citation)]
|
8 |
+
|
9 |
+
<p align="center">
|
10 |
+
<img src="img/splash_figure_alt.png" width="800">
|
11 |
+
</p>
|
12 |
+
|
13 |
+
|
14 |
+
This repo contains the official checkpoints for *Aligning Touch, Vision, and Language for Multimodal Perception*.
|
15 |
+
|
16 |
+
The tactile encoders comes in three different sizes: ViT-Tiny, ViT-Small, and ViT-Base, all of which are stored in
|
17 |
+
```bash
|
18 |
+
ckpt/tvl_enc
|
19 |
+
```
|
20 |
+
|
21 |
+
TVL-LLaMA, the generative counterparts, are stored in
|
22 |
+
```bash
|
23 |
+
ckpt/tvl_llama
|
24 |
+
```
|
25 |
+
|
26 |
+
## Inference
|
27 |
+
For zero-shot classification, we would require [OpenCLIP](https://github.com/mlfoundations/open_clip) with the following configuration:
|
28 |
+
```bash
|
29 |
+
CLIP_VISION_MODEL = "ViT-L-14"
|
30 |
+
CLIP_PRETRAIN_DATA = "datacomp_xl_s13b_b90k"
|
31 |
+
```
|
32 |
+
|
33 |
+
For TVL-LLaMA, please request access to the pre-trained LLaMA-2 from this [form](https://llama.meta.com/llama-downloads/). In particular, we use `llama-2-7b` as the base model. The weights here contains the trained [adapter](https://arxiv.org/abs/2309.03905), the tactile encoder, and the vision encoder for the ease of loading.
|
34 |
+
|
35 |
+
For the complete info, please take a look at the [GitHub repo](https://tvl.github.io) to see instructions on pretraining, fine-tuning, and evaluation with these models.
|
img/splash_figure_alt.png
ADDED
Git LFS Details
|