End of training
Browse files- README.md +22 -27
- model.safetensors +1 -1
README.md
CHANGED
@@ -22,7 +22,7 @@ model-index:
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
-
value: 0.
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -32,8 +32,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
32 |
|
33 |
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
-
- Loss: 0.
|
36 |
-
- Accuracy: 0.
|
37 |
|
38 |
## Model description
|
39 |
|
@@ -59,38 +59,33 @@ The following hyperparameters were used during training:
|
|
59 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
- lr_scheduler_type: linear
|
61 |
- lr_scheduler_warmup_ratio: 0.1
|
62 |
-
- num_epochs:
|
63 |
- mixed_precision_training: Native AMP
|
64 |
|
65 |
### Training results
|
66 |
|
67 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
68 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
69 |
-
| 2.
|
70 |
-
| 1.
|
71 |
-
| 1.
|
72 |
-
|
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.0033 | 16.0 | 1808 | 0.9150 | 0.83 |
|
85 |
-
| 0.0301 | 17.0 | 1921 | 0.9653 | 0.84 |
|
86 |
-
| 0.0027 | 18.0 | 2034 | 0.9828 | 0.84 |
|
87 |
-
| 0.0025 | 19.0 | 2147 | 0.9913 | 0.83 |
|
88 |
-
| 0.0029 | 20.0 | 2260 | 0.9928 | 0.83 |
|
89 |
|
90 |
|
91 |
### Framework versions
|
92 |
|
93 |
-
- Transformers 4.
|
94 |
- Pytorch 2.1.0+cu118
|
95 |
-
- Datasets 2.
|
96 |
-
- Tokenizers 0.
|
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
+
value: 0.85
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
32 |
|
33 |
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.8380
|
36 |
+
- Accuracy: 0.85
|
37 |
|
38 |
## Model description
|
39 |
|
|
|
59 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
- lr_scheduler_type: linear
|
61 |
- lr_scheduler_warmup_ratio: 0.1
|
62 |
+
- num_epochs: 15
|
63 |
- mixed_precision_training: Native AMP
|
64 |
|
65 |
### Training results
|
66 |
|
67 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
68 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
69 |
+
| 2.1361 | 1.0 | 113 | 1.9757 | 0.39 |
|
70 |
+
| 1.3989 | 2.0 | 226 | 1.3594 | 0.59 |
|
71 |
+
| 1.0771 | 3.0 | 339 | 0.9829 | 0.76 |
|
72 |
+
| 0.8901 | 4.0 | 452 | 0.8849 | 0.73 |
|
73 |
+
| 0.5455 | 5.0 | 565 | 0.7559 | 0.78 |
|
74 |
+
| 0.3767 | 6.0 | 678 | 0.7000 | 0.78 |
|
75 |
+
| 0.3712 | 7.0 | 791 | 0.6591 | 0.81 |
|
76 |
+
| 0.1638 | 8.0 | 904 | 0.6108 | 0.85 |
|
77 |
+
| 0.2128 | 9.0 | 1017 | 0.6600 | 0.84 |
|
78 |
+
| 0.1121 | 10.0 | 1130 | 0.8119 | 0.84 |
|
79 |
+
| 0.0144 | 11.0 | 1243 | 0.8470 | 0.85 |
|
80 |
+
| 0.1023 | 12.0 | 1356 | 0.7687 | 0.86 |
|
81 |
+
| 0.0096 | 13.0 | 1469 | 0.8509 | 0.85 |
|
82 |
+
| 0.0083 | 14.0 | 1582 | 0.8137 | 0.85 |
|
83 |
+
| 0.0088 | 15.0 | 1695 | 0.8380 | 0.85 |
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
|
86 |
### Framework versions
|
87 |
|
88 |
+
- Transformers 4.36.0.dev0
|
89 |
- Pytorch 2.1.0+cu118
|
90 |
+
- Datasets 2.15.0
|
91 |
+
- Tokenizers 0.15.0
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 94771728
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:82ced5ec10aeaece0c864ed1f0bc86ef124d5a3bd950df610b6204b05325212e
|
3 |
size 94771728
|