--- license: wtfpl language: - en - zh - ja - de datasets: - JosephusCheung/GuanacoDataset - meta-math/MetaMathQA - jondurbin/airoboros-3.1 - WizardLM/WizardLM_evol_instruct_V2_196k - RyokoAI/ShareGPT52K - RyokoAI/Fandom23K - milashkaarshif/MoeGirlPedia_wikitext_raw_archive - wikipedia - wiki_lingua - garage-bAInd/Open-Platypus - LDJnr/Puffin - BAAI/COIG - TigerResearch/tigerbot-zhihu-zh-10k - liwu/MNBVC - teknium/openhermes - CausalLM/Refined-Anime-Text - microsoft/orca-math-word-problems-200k - m-a-p/CodeFeedback-Filtered-Instruction base_model: CausalLM/35b-beta-long tags: - mlx --- # mlx-community/CausalLM-35b-beta-long-4bit The Model [mlx-community/CausalLM-35b-beta-long-4bit](https://huggingface.co/mlx-community/CausalLM-35b-beta-long-4bit) was converted to MLX format from [CausalLM/35b-beta-long](https://huggingface.co/CausalLM/35b-beta-long) using mlx-lm version **0.20.4**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("mlx-community/CausalLM-35b-beta-long-4bit") prompt="hello" if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```