rohithsiddhartha commited on
Commit
5ea7e58
·
verified ·
1 Parent(s): ece24eb

Upload configuration deepseek.py

Browse files

Adding configuration_deepseek.py should fix the issue with AutoConfig

```from transformers import AutoConfig

config = AutoConfig.from_pretrained("mlx-community/DeepSeek-R1-4bit", trust_remote_code=True)

print(config)
```
```
{
"name": "OSError",
"message": "mlx-community/DeepSeek-R1-4bit does not appear to have a file named configuration_deepseek.py. Checkout 'https://huggingface.co/mlx-community/DeepSeek-R1-4bit/tree/main' for available files.",
"stack": "---------------------------------------------------------------------------
HTTPError Traceback (most recent call last)
File ~/Desktop/gitlab/oura-phase1/.venv/lib/python3.11/site-packages/huggingface_hub/utils/_http.py:406, in hf_raise_for_status(response, endpoint_name)
405 try:
--> 406 response.raise_for_status()
407 except HTTPError as e:

File ~/Desktop/gitlab/oura-phase1/.venv/lib/python3.11/site-packages/requests/models.py:1024, in Response.raise_for_status(self)
1023 if http_error_msg:
-> 1024 raise HTTPError(http_error_msg, response=self)

HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/mlx-community/DeepSeek-R1-4bit/resolve/main/configuration_deepseek.py

The above exception was the direct cause of the following exception:

EntryNotFoundError Traceback (most recent call last)
File ~/Desktop/gitlab/oura-phase1/.venv/lib/python3.11/site-packages/transformers/utils/hub.py:403, in cached_file(path_or_repo_id, filename, cache_dir, force_download, resume_download, proxies, token, revision, local_files_only, subfolder, repo_type, user_agent, _raise_exceptions_for_gated_repo, _raise_exceptions_for_missing_entries, _raise_exceptions_for_connection_errors, _commit_hash, **deprecated_kwargs)
401 try:
402 # Load from URL or cache if already cached
--> 403 resolved_file = hf_hub_download(
404 path_or_repo_id,
405 filename,
406 subfolder=None if len(subfolder) == 0 else subfolder,
407 repo_type=repo_type,
408 revision=revision,
409 cache_dir=cache_dir,
410 user_agent=user_agent,
411 force_download=force_download,
412 proxies=proxies,
413 resume_download=resume_download,
414 token=token,
415 local_files_only=local_files_only,
416 )
417 except GatedRepoError as e:

File ~/Desktop/gitlab/oura-phase1/.venv/lib/python3.11/site-packages/huggingface_hub/utils/_validators.py:114, in validate_hf_hub_args.<locals>._inner_fn(*args, **kwargs)
112 kwargs = smoothly_deprecate_use_auth_token(fn_name=fn.__name__, has_token=has_token, kwargs=kwargs)
--> 114 return fn(*args, **kwargs)

File ~/Desktop/gitlab/oura-phase1/.venv/lib/python3.11/site-packages/huggingface_hub/file_download.py:860, in hf_hub_download(repo_id, filename, subfolder, repo_type, revision, library_name, library_version, cache_dir, local_dir, user_agent, force_download, proxies, etag_timeout, token, local_files_only, headers, endpoint, resume_download, force_filename, local_dir_use_symlinks)
859 else:
--> 860 return _hf_hub_download_to_cache_dir(
861 # Destination
862 cache_dir=cache_dir,
863 # File info
864 repo_id=repo_id,
865 filename=filename,
866 repo_type=repo_type,
867 revision=revision,
868 # HTTP info
869 endpoint=endpoint,
870 etag_timeout=etag_timeout,
871 headers=hf_headers,
872 proxies=proxies,
873 token=token,
874 # Additional options
875 local_files_only=local_files_only,
876 force_download=force_download,
877 )

File ~/Desktop/gitlab/oura-phase1/.venv/lib/python3.11/site-packages/huggingface_hub/file_download.py:923, in _hf_hub_download_to_cache_dir(cache_dir, repo_id, filename, repo_type, revision, endpoint, etag_timeout, headers, proxies, token, local_files_only, force_download)
921 # Try to get metadata (etag, commit_hash, url, size) from the server.
922 # If we can't, a HEAD request error is returned.
--> 923 (url_to_download, etag, commit_hash, expected_size, head_call_error) = _get_metadata_or_catch_error(
924 repo_id=repo_id,
925 filename=filename,
926 repo_type=repo_type,
927 revision=revision,
928 endpoint=endpoint,
929 proxies=proxies,
930 etag_timeout=etag_timeout,
931 headers=headers,
932 token=token,
933 local_files_only=local_files_only,
934 storage_folder=storage_folder,
935 relative_filename=relative_filename,
936 )
938 # etag can be None for several reasons:
939 # 1. we passed local_files_only.
940 # 2. we don't have a connection
(...)
946 # If the specified revision is a commit hash, look inside \"snapshots\".
947 # If the specified revision is a branch or tag, look inside \"refs\".

File ~/Desktop/gitlab/oura-phase1/.venv/lib/python3.11/site-packages/huggingface_hub/file_download.py:1374, in _get_metadata_or_catch_error(repo_id, filename, repo_type, revision, endpoint, proxies, etag_timeout, headers, token, local_files_only, relative_filename, storage_folder)
1373 try:
-> 1374 metadata = get_hf_file_metadata(
1375 url=url, proxies=proxies, timeout=etag_timeout, headers=headers, token=token
1376 )
1377 except EntryNotFoundError as http_error:

File ~/Desktop/gitlab/oura-phase1/.venv/lib/python3.11/site-packages/huggingface_hub/utils/_validators.py:114, in validate_hf_hub_args.<locals>._inner_fn(*args, **kwargs)
112 kwargs = smoothly_deprecate_use_auth_token(fn_name=fn.__name__, has_token=has_token, kwargs=kwargs)
--> 114 return fn(*args, **kwargs)

File ~/Desktop/gitlab/oura-phase1/.venv/lib/python3.11/site-packages/huggingface_hub/file_download.py:1294, in get_hf_file_metadata(url, token, proxies, timeout, library_name, library_version, user_agent, headers)
1293 # Retrieve metadata
-> 1294 r = _request_wrapper(
1295 method=\"HEAD\",
1296 url=url,
1297 headers=hf_headers,
1298 allow_redirects=False,
1299 follow_relative_redirects=True,
1300 proxies=proxies,
1301 timeout=timeout,
1302 )
1303 hf_raise_for_status(r)

File ~/Desktop/gitlab/oura-phase1/.venv/lib/python3.11/site-packages/huggingface_hub/file_download.py:278, in _request_wrapper(method, url, follow_relative_redirects, **params)
277 if follow_relative_redirects:
--> 278 response = _request_wrapper(
279 method=method,
280 url=url,
281 follow_relative_redirects=False,
282 **params,
283 )
285 # If redirection, we redirect only relative paths.
286 # This is useful in case of a renamed repository.

File ~/Desktop/gitlab/oura-phase1/.venv/lib/python3.11/site-packages/huggingface_hub/file_download.py:302, in _request_wrapper(method, url, follow_relative_redirects, **params)
301 response = get_session().request(method=method, url=url, **params)
--> 302 hf_raise_for_status(response)
303 return response

File ~/Desktop/gitlab/oura-phase1/.venv/lib/python3.11/site-packages/huggingface_hub/utils/_http.py:417, in hf_raise_for_status(response, endpoint_name)
416 message = f\"{response.status_code} Client Error.\" + \"\
\
\" + f\"Entry Not Found for url: {response.url}.\"
--> 417 raise _format(EntryNotFoundError, message, response) from e
419 elif error_code == \"GatedRepo\":

EntryNotFoundError: 404 Client Error. (Request ID: Root=1-679beb26-1fc737e519d50def733753f2;4d93fdf8-c9f1-42d4-a232-a8984aa545de)

Entry Not Found for url: https://huggingface.co/mlx-community/DeepSeek-R1-4bit/resolve/main/configuration_deepseek.py.

The above exception was the direct cause of the following exception:

OSError Traceback (most recent call last)
Cell In[22], line 4
1 from transformers import AutoConfig
3 # config = AutoConfig.from_pretrained(\"mlx-community/DeepSeek-V3-4bit\", trust_remote_code=True)
----> 4 config = AutoConfig.from_pretrained(\"mlx-community/DeepSeek-R1-4bit\", trust_remote_code=True)
6 print(config)

File ~/Desktop/gitlab/oura-phase1/.venv/lib/python3.11/site-packages/transformers/models/auto/configuration_auto.py:1063, in AutoConfig.from_pretrained(cls, pretrained_model_name_or_path, **kwargs)
1061 if has_remote_code and trust_remote_code:
1062 class_ref = config_dict[\"auto_map\"][\"AutoConfig\"]
-> 1063 config_class = get_class_from_dynamic_module(
1064 class_ref, pretrained_model_name_or_path, code_revision=code_revision, **kwargs
1065 )
1066 if os.path.isdir(pretrained_model_name_or_path):
1067 config_class.register_for_auto_class()

File ~/Desktop/gitlab/oura-phase1/.venv/lib/python3.11/site-packages/transformers/dynamic_module_utils.py:541, in get_class_from_dynamic_module(class_reference, pretrained_model_name_or_path, cache_dir, force_download, resume_download, proxies, token, revision, local_files_only, repo_type, code_revision, **kwargs)
539 code_revision = revision
540 # And lastly we get the class inside our newly created module
--> 541 final_module = get_cached_module_file(
542 repo_id,
543 module_file + \".py\",
544 cache_dir=cache_dir,
545 force_download=force_download,
546 resume_download=resume_download,
547 proxies=proxies,
548 token=token,
549 revision=code_revision,
550 local_files_only=local_files_only,
551 repo_type=repo_type,
552 )
553 return get_class_in_module(class_name, final_module, force_reload=force_download)

File ~/Desktop/gitlab/oura-phase1/.venv/lib/python3.11/site-packages/transformers/dynamic_module_utils.py:345, in get_cached_module_file(pretrained_model_name_or_path, module_file, cache_dir, force_download, resume_download, proxies, token, revision, local_files_only, repo_type, _commit_hash, **deprecated_kwargs)
342 new_files = []
343 try:
344 # Load from URL or cache i

Files changed (1) hide show
  1. configuration_deepseek.py +210 -0
configuration_deepseek.py ADDED
@@ -0,0 +1,210 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers.configuration_utils import PretrainedConfig
2
+ from transformers.utils import logging
3
+
4
+ logger = logging.get_logger(__name__)
5
+
6
+ DEEPSEEK_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
7
+ class DeepseekV3Config(PretrainedConfig):
8
+ r"""
9
+ This is the configuration class to store the configuration of a [`DeepseekV3Model`]. It is used to instantiate an DeepSeek
10
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
11
+ defaults will yield a similar configuration to that of the DeepSeek-V3.
12
+
13
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
14
+ documentation from [`PretrainedConfig`] for more information.
15
+
16
+
17
+ Args:
18
+ vocab_size (`int`, *optional*, defaults to 129280):
19
+ Vocabulary size of the Deep model. Defines the number of different tokens that can be represented by the
20
+ `inputs_ids` passed when calling [`DeepseekV3Model`]
21
+ hidden_size (`int`, *optional*, defaults to 4096):
22
+ Dimension of the hidden representations.
23
+ intermediate_size (`int`, *optional*, defaults to 11008):
24
+ Dimension of the MLP representations.
25
+ moe_intermediate_size (`int`, *optional*, defaults to 1407):
26
+ Dimension of the MoE representations.
27
+ num_hidden_layers (`int`, *optional*, defaults to 32):
28
+ Number of hidden layers in the Transformer decoder.
29
+ num_nextn_predict_layers (`int`, *optional*, defaults to 1):
30
+ Number of nextn predict layers in the DeepSeekV3 Model.
31
+ num_attention_heads (`int`, *optional*, defaults to 32):
32
+ Number of attention heads for each attention layer in the Transformer decoder.
33
+ n_shared_experts (`int`, *optional*, defaults to None):
34
+ Number of shared experts, None means dense model.
35
+ n_routed_experts (`int`, *optional*, defaults to None):
36
+ Number of routed experts, None means dense model.
37
+ routed_scaling_factor (`float`, *optional*, defaults to 1.0):
38
+ Scaling factor or routed experts.
39
+ topk_method (`str`, *optional*, defaults to `gready`):
40
+ Topk method used in routed gate.
41
+ n_group (`int`, *optional*, defaults to None):
42
+ Number of groups for routed experts.
43
+ topk_group (`int`, *optional*, defaults to None):
44
+ Number of selected groups for each token(for each token, ensuring the selected experts is only within `topk_group` groups).
45
+ num_experts_per_tok (`int`, *optional*, defaults to None):
46
+ Number of selected experts, None means dense model.
47
+ moe_layer_freq (`int`, *optional*, defaults to 1):
48
+ The frequency of the MoE layer: one expert layer for every `moe_layer_freq - 1` dense layers.
49
+ first_k_dense_replace (`int`, *optional*, defaults to 0):
50
+ Number of dense layers in shallow layers(embed->dense->dense->...->dense->moe->moe...->lm_head).
51
+ \--k dense layers--/
52
+ norm_topk_prob (`bool`, *optional*, defaults to False):
53
+ Whether to normalize the weights of the routed experts.
54
+ scoring_func (`str`, *optional*, defaults to 'softmax'):
55
+ Method of computing expert weights.
56
+ aux_loss_alpha (`float`, *optional*, defaults to 0.001):
57
+ Auxiliary loss weight coefficient.
58
+ seq_aux = (`bool`, *optional*, defaults to True):
59
+ Whether to compute the auxiliary loss for each individual sample.
60
+ num_key_value_heads (`int`, *optional*):
61
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
62
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
63
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
64
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
65
+ by meanpooling all the original heads within that group. For more details checkout [this
66
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
67
+ `num_attention_heads`.
68
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
69
+ The non-linear activation function (function or string) in the decoder.
70
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
71
+ The maximum sequence length that this model might ever be used with.
72
+ initializer_range (`float`, *optional*, defaults to 0.02):
73
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
74
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
75
+ The epsilon used by the rms normalization layers.
76
+ use_cache (`bool`, *optional*, defaults to `True`):
77
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
78
+ relevant if `config.is_decoder=True`.
79
+ pad_token_id (`int`, *optional*):
80
+ Padding token id.
81
+ bos_token_id (`int`, *optional*, defaults to 1):
82
+ Beginning of stream token id.
83
+ eos_token_id (`int`, *optional*, defaults to 2):
84
+ End of stream token id.
85
+ pretraining_tp (`int`, *optional*, defaults to 1):
86
+ Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
87
+ document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
88
+ necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
89
+ issue](https://github.com/pytorch/pytorch/issues/76232).
90
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
91
+ Whether to tie weight embeddings
92
+ rope_theta (`float`, *optional*, defaults to 10000.0):
93
+ The base period of the RoPE embeddings.
94
+ rope_scaling (`Dict`, *optional*):
95
+ Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
96
+ strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
97
+ `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
98
+ `max_position_embeddings` to the expected new maximum.
99
+ attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
100
+ Whether to use a bias in the query, key, value and output projection layers during self-attention.
101
+ attention_dropout (`float`, *optional*, defaults to 0.0):
102
+ The dropout ratio for the attention probabilities.
103
+
104
+ ```python
105
+ >>> from transformers import DeepseekV3Model, DeepseekV3Config
106
+
107
+ >>> # Initializing a Deepseek-V3 style configuration
108
+ >>> configuration = DeepseekV3Config()
109
+
110
+ >>> # Accessing the model configuration
111
+ >>> configuration = model.config
112
+ ```"""
113
+
114
+ model_type = "deepseek_v3"
115
+ keys_to_ignore_at_inference = ["past_key_values"]
116
+
117
+ def __init__(
118
+ self,
119
+ vocab_size=129280,
120
+ hidden_size=7168,
121
+ intermediate_size=18432,
122
+ moe_intermediate_size = 2048,
123
+ num_hidden_layers=61,
124
+ num_nextn_predict_layers=1,
125
+ num_attention_heads=128,
126
+ num_key_value_heads=128,
127
+ n_shared_experts = 1,
128
+ n_routed_experts = 256,
129
+ ep_size = 1,
130
+ routed_scaling_factor = 2.5,
131
+ kv_lora_rank = 512,
132
+ q_lora_rank = 1536,
133
+ qk_rope_head_dim = 64,
134
+ v_head_dim = 128,
135
+ qk_nope_head_dim = 128,
136
+ topk_method = 'noaux_tc',
137
+ n_group = 8,
138
+ topk_group = 4,
139
+ num_experts_per_tok = 8,
140
+ moe_layer_freq = 1,
141
+ first_k_dense_replace = 3,
142
+ norm_topk_prob = True,
143
+ scoring_func = 'sigmoid',
144
+ aux_loss_alpha = 0.001,
145
+ seq_aux = True,
146
+ hidden_act="silu",
147
+ max_position_embeddings=4096,
148
+ initializer_range=0.02,
149
+ rms_norm_eps=1e-6,
150
+ use_cache=True,
151
+ pad_token_id=None,
152
+ bos_token_id=0,
153
+ eos_token_id=1,
154
+ pretraining_tp=1,
155
+ tie_word_embeddings=False,
156
+ rope_theta=10000.0,
157
+ rope_scaling=None,
158
+ attention_bias=False,
159
+ attention_dropout=0.0,
160
+ **kwargs,
161
+ ):
162
+ self.vocab_size = vocab_size
163
+ self.max_position_embeddings = max_position_embeddings
164
+ self.hidden_size = hidden_size
165
+ self.intermediate_size = intermediate_size
166
+ self.moe_intermediate_size = moe_intermediate_size
167
+ self.num_hidden_layers = num_hidden_layers
168
+ self.num_nextn_predict_layers = num_nextn_predict_layers
169
+ self.num_attention_heads = num_attention_heads
170
+ self.n_shared_experts = n_shared_experts
171
+ self.n_routed_experts = n_routed_experts
172
+ self.ep_size = ep_size
173
+ self.routed_scaling_factor = routed_scaling_factor
174
+ self.kv_lora_rank = kv_lora_rank
175
+ self.q_lora_rank = q_lora_rank
176
+ self.qk_rope_head_dim = qk_rope_head_dim
177
+ self.v_head_dim = v_head_dim
178
+ self.qk_nope_head_dim = qk_nope_head_dim
179
+ self.topk_method = topk_method
180
+ self.n_group = n_group
181
+ self.topk_group = topk_group
182
+ self.num_experts_per_tok = num_experts_per_tok
183
+ self.moe_layer_freq = moe_layer_freq
184
+ self.first_k_dense_replace = first_k_dense_replace
185
+ self.norm_topk_prob = norm_topk_prob
186
+ self.scoring_func = scoring_func
187
+ self.aux_loss_alpha = aux_loss_alpha
188
+ self.seq_aux = seq_aux
189
+ # for backward compatibility
190
+ if num_key_value_heads is None:
191
+ num_key_value_heads = num_attention_heads
192
+
193
+ self.num_key_value_heads = num_key_value_heads
194
+ self.hidden_act = hidden_act
195
+ self.initializer_range = initializer_range
196
+ self.rms_norm_eps = rms_norm_eps
197
+ self.pretraining_tp = pretraining_tp
198
+ self.use_cache = use_cache
199
+ self.rope_theta = rope_theta
200
+ self.rope_scaling = rope_scaling
201
+ self.attention_bias = attention_bias
202
+ self.attention_dropout = attention_dropout
203
+
204
+ super().__init__(
205
+ pad_token_id=pad_token_id,
206
+ bos_token_id=bos_token_id,
207
+ eos_token_id=eos_token_id,
208
+ tie_word_embeddings=tie_word_embeddings,
209
+ **kwargs,
210
+ )