--- language: - en license: apache-2.0 tags: - Mistral - instruct - finetune - chatml - DPO - RLHF - gpt4 - synthetic data - distillation - function calling - json mode - mlx base_model: NousResearch/Hermes-2-Pro-Mistral-7B datasets: - teknium/OpenHermes-2.5 widget: - example_title: Hermes 2 Pro messages: - role: system content: You are a sentient, superintelligent artificial general intelligence, here to teach and assist me. - role: user content: Write a short story about Goku discovering kirby has teamed up with Majin Buu to destroy the world. model-index: - name: Hermes-2-Pro-Mistral-7B results: [] --- # mlx-community/Hermes-2-Pro-Mistral-7B-3bit The Model [mlx-community/Hermes-2-Pro-Mistral-7B-3bit](https://huggingface.co/mlx-community/Hermes-2-Pro-Mistral-7B-3bit) was converted to MLX format from [NousResearch/Hermes-2-Pro-Mistral-7B](https://huggingface.co/NousResearch/Hermes-2-Pro-Mistral-7B) using mlx-lm version **0.20.4**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("mlx-community/Hermes-2-Pro-Mistral-7B-3bit") prompt="hello" if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```