File size: 1,468 Bytes
ee8ff4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
---
language:
- en
license: llama3
tags:
- Llama-3
- instruct
- finetune
- chatml
- gpt4
- synthetic data
- distillation
- function calling
- json mode
- axolotl
- roleplaying
- chat
- mlx
base_model: NousResearch/Hermes-3-Llama-3.2-3B
widget:
- example_title: Hermes 3
  messages:
  - role: system
    content: You are a sentient, superintelligent artificial general intelligence,
      here to teach and assist me.
  - role: user
    content: Write a short story about Goku discovering kirby has teamed up with Majin
      Buu to destroy the world.
library_name: transformers
model-index:
- name: Hermes-3-Llama-3.1-405B
  results: []
---

# mlx-community/Hermes-3-Llama-3.2-3B-4bit

The Model [mlx-community/Hermes-3-Llama-3.2-3B-4bit](https://huggingface.co/mlx-community/Hermes-3-Llama-3.2-3B-4bit) was
converted to MLX format from [NousResearch/Hermes-3-Llama-3.2-3B](https://huggingface.co/NousResearch/Hermes-3-Llama-3.2-3B)
using mlx-lm version **0.20.3**.

## Use with mlx

```bash
pip install mlx-lm
```

```python
from mlx_lm import load, generate

model, tokenizer = load("mlx-community/Hermes-3-Llama-3.2-3B-4bit")

prompt="hello"

if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
    messages = [{"role": "user", "content": prompt}]
    prompt = tokenizer.apply_chat_template(
        messages, tokenize=False, add_generation_prompt=True
    )

response = generate(model, tokenizer, prompt=prompt, verbose=True)
```