File size: 13,320 Bytes
a9e00be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 |
# Copyright (C) 2024 THL A29 Limited, a Tencent company. All rights reserved.
#
# Licensed under the TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://github.com/Tencent/Tencent-Hunyuan-Large/blob/main/License.docx
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import base64
import logging
import tiktoken
import unicodedata
from transformers import PreTrainedTokenizer, AddedToken
from typing import Collection, Dict, List, Set, Tuple, Union
logger = logging.getLogger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "hy.tiktoken"}
PAT_STR = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|""" \
r"""[^\r\n\p{L}\p{N}]?\p{L}+|""" \
r"""\p{N}|""" \
r""" ?[^\s\p{L}\p{N}]+[\r\n]*|""" \
r"""\s*[\r\n]+|""" \
r"""\s+(?!\S)|""" \
r"""\s+"""
# default eod_token and bod_token of our base model
ENDOFTEXT = "<|endoftext|>"
STARTOFTEXT = "<|startoftext|>"
# extra flag token for other training
BOSTOKEN = "<|bos|>"
EOSTOKEN = "<|eos|>"
PADTOKEN = "<|pad|>"
# extra special tokens for the tokenizer
# as the default behavior is changed to allow special tokens in
# regular texts, the surface forms of special tokens need to be
# as different as possible to minimize the impact
EXTRAS = tuple((f"<|extra_{i}|>" for i in range(204)))
SPECIAL_START_ID = 127957
def _load_tiktoken_bpe(tiktoken_bpe_file: str) -> Dict[bytes, int]:
dic = {}
rank = 0
for i, line in enumerate(open(tiktoken_bpe_file, "rb")):
if line:
token, _ = line.split()
# skip duplicated tokens, this should not happen
if base64.b64decode(token) in dic:
raise ValueError(f"!ERROR: duplicated token {token} in your vocab file")
dic[base64.b64decode(token)] = int(rank)
rank += 1
return dic
# special tokens for pretrain and finetune models
SPECIAL_TOKENS = tuple(
enumerate(
(
(
ENDOFTEXT,
STARTOFTEXT,
BOSTOKEN,
EOSTOKEN,
PADTOKEN,
)
+ EXTRAS
),
start=SPECIAL_START_ID,
)
)
SPECIAL_TOKENS_SET = set(t for i, t in SPECIAL_TOKENS)
class HYTokenizer(PreTrainedTokenizer):
"""
HunYuan Tokenizer Initialization. We extend `tiktoken` vocab and
the default EOD & BOD special tokens are used for base model.
Args:
vocab_file (`str`):
Path to the vocabulary file.
errors (`str`):
How to handle errors in decoding UTF-8 byte sequences.
use ignore if you are in streaming inference
bod_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `""<|startoftext|>""`):
The beginning of document token that was used for training. can be modified by your task.
default to be `<|startoftext|>` for released base model.
eod_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `""<|endoftext|>""`):
The end of document token that was used for training. can be modified by your task.
default to be `<|endoftext|>` for released base model.
bos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `None`):
The start or sep special token that was used for some training tasks.
default to be `<|startoftext|>` for released base model.
It can be set to `<|bos|>` when you training for some other task
eos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `None`):
The end or sep special token that was used for some training tasks.
default to be `<|endoftext|>` for released base model.
It can be set to `<|eos|>` when you training for some other task
pad_token (`str` or `tokenizers.AddedToken`, *optional*):
A special token used to make arrays of tokens the same size for batching purpose. Will then be ignored by
attention mechanisms or loss computation.
special_vocab_file (str, *optional*):
Customed special extra vocab file, same format with hy.tiktoken.
**Be careful** to use the extra special vocab, it will may cause the model loading collapse.
The data line be like:
`PHxhYmN8Pg== 0`
the id followed `base64.encode(str)` is unused, we will reset them in case of collision
add_bod_token (`bool`, *optional*, defaults to `True`):
Whether or not to add an `bos_token` at the start of documents.
This will effect `build_inputs_with_special_tokens` method
add_eod_token (`bool`, *optional*, defaults to `False`):
Whether or not to add an `eos_token` at the end of documents.
This will effect `build_inputs_with_special_tokens` method
"""
vocab_files_names = VOCAB_FILES_NAMES
def __init__(
self,
vocab_file,
errors="replace",
bod_token="<|startoftext|>",
eod_token="<|endoftext|>",
bos_token="<|startoftext|>",
eos_token="<|endoftext|>",
pad_token="<|pad|>",
add_bod_token=True,
add_eod_token=True,
**kwargs,
):
super().__init__(**kwargs)
self.errors = errors
self.mergeable_ranks = _load_tiktoken_bpe(vocab_file) # type: Dict[bytes, int]
self.special_tokens = {
token: index
for index, token in SPECIAL_TOKENS
}
enc = tiktoken.Encoding(
"HunYuan",
pat_str=PAT_STR,
mergeable_ranks=self.mergeable_ranks,
special_tokens=self.special_tokens,
)
assert (
len(self.mergeable_ranks) + len(self.special_tokens) == enc.n_vocab
), f"{len(self.mergeable_ranks)} + {len(self.special_tokens)} != {enc.n_vocab} in encoding"
self.decoder = {
v: k for k, v in self.mergeable_ranks.items()
} # type: dict[int, bytes|str]
self.decoder.update({v: k for k, v in self.special_tokens.items()})
self.tokenizer = enc
self.bod_token, self.bod_id = bod_token, self.special_tokens[bod_token]
self.eod_token, self.eod_id = eod_token, self.special_tokens[eod_token]
self.bos_token, self.bos_id = bos_token, self.special_tokens[bos_token]
self.eos_token, self.eos_id = eos_token, self.special_tokens[eos_token]
self.pad_token, self.pad_id = pad_token, self.special_tokens[pad_token]
self._num_special_token = len(self.special_tokens)
self.add_bod_token = add_bod_token
self.add_eod_token = add_eod_token
def __getstate__(self):
state = self.__dict__.copy()
del state["tokenizer"]
return state
def __setstate__(self, state):
self.__dict__.update(state)
enc = tiktoken.Encoding(
"HunYuan",
pat_str=PAT_STR,
mergeable_ranks=self.mergeable_ranks,
special_tokens=self.special_tokens,
)
self.tokenizer = enc
def __len__(self) -> int:
return self.tokenizer.n_vocab
def get_vocab(self) -> Dict[bytes, int]:
"""Return the vocabulary as a dictionary, without special tokens."""
return self.mergeable_ranks
def convert_tokens_to_ids(
self, tokens: Union[bytes, str, List[Union[bytes, str]]]
) -> List[int]:
ids = []
if isinstance(tokens, (str, bytes)):
if tokens in self.special_tokens:
return self.special_tokens[tokens]
else:
return self.mergeable_ranks.get(tokens)
for token in tokens:
if token in self.special_tokens:
ids.append(self.special_tokens[token])
else:
ids.append(self.mergeable_ranks.get(token))
return ids
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
bod_token_id = [self.bod_id] if self.add_bod_token else []
eod_token_id = [self.eod_id] if self.add_eod_token else []
output = bod_token_id + token_ids_0 + eod_token_id
if token_ids_1 is not None:
output = output + bod_token_id + token_ids_1 + eod_token_id
return output
def _add_tokens(
self,
new_tokens: Union[List[str], List[AddedToken]],
special_tokens: bool = False,
) -> List[Tuple[int, str]]:
"""do not support adding tokens"""
if not special_tokens and new_tokens:
raise ValueError("Adding regular tokens is not supported")
for token in new_tokens:
surface_form = token.content if isinstance(token, AddedToken) else token
if surface_form not in SPECIAL_TOKENS_SET:
raise ValueError("Adding unknown special tokens is not supported")
return 0
def save_vocabulary(self, save_directory: str, **kwargs) -> Tuple[str]:
"""
Save only the vocabulary of the tokenizer (vocabulary).
Returns:
`Tuple(str)`: Paths to the files saved.
"""
file_path = os.path.join(save_directory, "hy.tiktoken")
with open(file_path, "w", encoding="utf8") as w:
for k, v in self.mergeable_ranks.items():
line = base64.b64encode(k).decode("utf8") + " " + str(v) + "\n"
w.write(line)
return (file_path,)
def tokenize(
self,
text: str,
allowed_special: Union[Set, str] = "all",
disallowed_special: Union[Collection, str] = (),
**kwargs,
) -> List[Union[bytes, str]]:
"""
Converts a string in a sequence of tokens.
Args:
text (`str`):
The sequence to be encoded.
allowed_special (`Literal["all"]` or `set`):
The surface forms of the tokens to be encoded as special tokens in regular texts.
Default to "all".
disallowed_special (`Literal["all"]` or `Collection`):
The surface forms of the tokens that should not be in regular texts and trigger errors.
Default to an empty tuple.
kwargs (additional keyword arguments, *optional*):
Will be passed to the underlying model specific encode method.
Returns:
`List[bytes|str]`: The list of tokens.
"""
tokens = []
text = unicodedata.normalize("NFC", text)
# this implementation takes a detour: text -> token id -> token surface forms
for t in self.tokenizer.encode(
text, allowed_special=allowed_special, disallowed_special=disallowed_special
):
tokens.append(self.decoder[t])
return tokens
def convert_tokens_to_string(self, tokens: List[Union[bytes, str]]) -> str:
"""
Converts a sequence of tokens in a single string.
"""
text = ""
temp = b""
for t in tokens:
if isinstance(t, str):
if temp:
text += temp.decode("utf-8", errors=self.errors)
temp = b""
text += t
elif isinstance(t, bytes):
temp += t
else:
raise TypeError("token should only be of type types or str")
if temp:
text += temp.decode("utf-8", errors=self.errors)
return text
@property
def vocab_size(self):
return self.tokenizer.n_vocab
def _convert_id_to_token(self, index: int) -> Union[bytes, str]:
"""Converts an id to a token, special tokens included"""
if index in self.decoder:
return self.decoder[index]
raise ValueError("unknown ids")
def _convert_token_to_id(self, token: Union[bytes, str]) -> int:
"""Converts a token to an id using the vocab, special tokens included"""
if token in self.special_tokens:
return self.special_tokens[token]
if token in self.mergeable_ranks:
return self.mergeable_ranks[token]
raise ValueError("unknown token")
def _tokenize(self, text: str, **kwargs):
"""
Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based
vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces).
Do NOT take care of added tokens.
"""
raise NotImplementedError
def _decode(
self,
token_ids: Union[int, List[int]],
skip_special_tokens: bool = False,
errors: str = None,
**kwargs,
) -> str:
if isinstance(token_ids, int):
token_ids = [token_ids]
if skip_special_tokens:
token_ids = [i for i in token_ids if i < self.eod_id]
return self.tokenizer.decode(token_ids, errors=errors or self.errors)
|