Text Generation
Transformers
Safetensors
MLX
English
Japanese
llama
conversational
text-generation-inference
Inference Endpoints
File size: 1,187 Bytes
4f537da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
---
language:
- en
- ja
library_name: transformers
pipeline_tag: text-generation
license:
- llama3.1
- gemma
model_type: llama
datasets:
- lmsys/lmsys-chat-1m
- tokyotech-llm/lmsys-chat-1m-synth
- argilla/magpie-ultra-v0.1
base_model: tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.2
tags:
- mlx
---

# mlx-community/Llama-3.1-Swallow-8B-Instruct-v0.2

The Model [mlx-community/Llama-3.1-Swallow-8B-Instruct-v0.2](https://huggingface.co/mlx-community/Llama-3.1-Swallow-8B-Instruct-v0.2) was converted to MLX format from [tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.2](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.2) using mlx-lm version **0.19.1**.

## Use with mlx

```bash
pip install mlx-lm
```

```python
from mlx_lm import load, generate

model, tokenizer = load("mlx-community/Llama-3.1-Swallow-8B-Instruct-v0.2")

prompt="hello"

if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
    messages = [{"role": "user", "content": prompt}]
    prompt = tokenizer.apply_chat_template(
        messages, tokenize=False, add_generation_prompt=True
    )

response = generate(model, tokenizer, prompt=prompt, verbose=True)
```