---
license: mit
---
## [mlx-community/Mistral-7B-v0.1-LoRA-Text2SQL](https://huggingface.co/mlx-community/Mistral-7B-v0.1-LoRA-Text2SQL)
本次微调的模型我已经上传到了 HuggingFace Hub 上,大家可以进行尝试。
### 安装 mlx-lm
```bash
pip install mlx-lm
```
### 生成 SQL
```
python -m mlx_lm.generate --model mlx-community/Mistral-7B-v0.1-LoRA-Text2SQL \
--max-tokens 50 \
--prompt "table: students
columns: Name, Age, School, Grade, Height, Weight
Q: Which school did Wang Junjian come from?
A: "
```
```
SELECT School FROM Students WHERE Name = 'Wang Junjian'
```
## [在 MLX 上使用 LoRA 基于 Mistral-7B 微调 Text2SQL(一)](https://wangjunjian.com/mlx/lora/2024/01/23/Fine-tuning-Text2SQL-based-on-Mistral-7B-using-LoRA-on-MLX-1.html)
📌 没有使用模型的标注格式生成数据集,导致不能结束,直到生成最大的 Tokens 数量。
这次我们来解决这个问题。
## 数据集 WikiSQL
- [WikiSQL](https://github.com/salesforce/WikiSQL)
- [sqllama/sqllama-V0](https://huggingface.co/sqllama/sqllama-V0/blob/main/wikisql.ipynb)
### 修改脚本 mlx-examples/lora/data/wikisql.py
```py
if __name__ == "__main__":
# ......
for dataset, name, size in datasets:
with open(f"data/{name}.jsonl", "w") as fid:
for e, t in zip(range(size), dataset):
"""
t 变量的文本是这样的:
------------------------
table: 1-1058787-1
columns: Approximate Age, Virtues, Psycho Social Crisis, Significant Relationship, Existential Question [ not in citation given ], Examples
Q: How many significant relationships list Will as a virtue?
A: SELECT COUNT Significant Relationship FROM 1-1058787-1 WHERE Virtues = 'Will'
"""
t = t[3:] # 去掉开头的 ,因为 tokenizer 会自动添加
json.dump({"text": t}, fid)
fid.write("\n")
```
执行脚本 `data/wikisql.py` 生成数据集。
### 样本示例
```
table: 1-10753917-1
columns: Season, Driver, Team, Engine, Poles, Wins, Podiums, Points, Margin of defeat
Q: Which podiums did the alfa romeo team have?
A: SELECT Podiums FROM 1-10753917-1 WHERE Team = 'Alfa Romeo'
```
## 微调
- 预训练模型 [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
### LoRA 微调
```bash
python lora.py --model mistralai/Mistral-7B-v0.1 \
--train \
--iters 600
```
```
Total parameters 7243.436M
Trainable parameters 1.704M
python lora.py --model mistralai/Mistral-7B-v0.1 --train --iters 600 50.58s user 214.71s system 21% cpu 20:26.04 total
```
微调万分之 2.35 (1.704M / 7243.436M * 10000)的模型参数。
LoRA 微调 600 次迭代,耗时 20 分 26 秒,占用内存 46G。
## 评估
计算测试集困惑度(PPL)和交叉熵损失(Loss)。
```bash
python lora.py --model mistralai/Mistral-7B-v0.1 \
--adapter-file adapters.npz \
--test
```
```
Iter 100: Test loss 1.351, Test ppl 3.862.
Iter 200: Test loss 1.327, Test ppl 3.770.
Iter 300: Test loss 1.353, Test ppl 3.869.
Iter 400: Test loss 1.355, Test ppl 3.875.
Iter 500: Test loss 1.294, Test ppl 3.646.
Iter 600: Test loss 1.351, Test ppl 3.863.
```
| Iter | Test loss | Test ppl |
| :--: | --------: | -------: |
| 100 | 1.351 | 3.862 |
| 200 | 1.327 | 3.770 |
| 300 | 1.353 | 3.869 |
| 400 | 1.355 | 3.875 |
| 500 | 1.294 | 3.646 |
| 600 | 1.351 | 3.863 |
评估占用内存 26G。
## 融合(Fuse)
```bash
python fuse.py --model mistralai/Mistral-7B-v0.1 \
--adapter-file adapters.npz \
--save-path lora_fused_model
```
## 生成 SQL
### 王军建的姓名是什么?
```bash
python -m mlx_lm.generate --model lora_fused_model \
--max-tokens 50 \
--prompt "table: students
columns: Name, Age, School, Grade, Height, Weight
Q: What is Wang Junjian's name?
A: "
```
```
SELECT Name FROM students WHERE Name = 'Wang Junjian'
```
### 王军建的年龄是多少?
```bash
python -m mlx_lm.generate --model lora_fused_model \
--max-tokens 50 \
--prompt "table: students
columns: Name, Age, School, Grade, Height, Weight
Q: How old is Wang Junjian?
A: "
```
```
SELECT Age FROM Students WHERE Name = 'Wang Junjian'
```
### 王军建来自哪所学校?
```bash
python -m mlx_lm.generate --model lora_fused_model \
--max-tokens 50 \
--prompt "table: students
columns: Name, Age, School, Grade, Height, Weight
Q: Which school did Wang Junjian come from?
A: "
```
```
SELECT School FROM Students WHERE Name = 'Wang Junjian'
```
### 查询王军建的姓名、年龄、学校信息。
```bash
python -m mlx_lm.generate --model lora_fused_model \
--max-tokens 50 \
--prompt "table: students
columns: Name, Age, School, Grade, Height, Weight
Q: Query Wang Junjian’s name, age, and school information.
A: "
```
```
SELECT Name, Age, School FROM Students WHERE Name = 'Wang Junjian'
```
### 查询王军建的所有信息。
```bash
python -m mlx_lm.generate --model lora_fused_model \
--max-tokens 50 \
--prompt "table: students
columns: Name, Age, School, Grade, Height, Weight
Q: Query all information about Wang Junjian.
A: "
```
```
SELECT Name FROM students WHERE Name = 'Wang Junjian'
```
可能训练数据不足。
### 统计一下九年级有多少学生。
```bash
python -m mlx_lm.generate --model lora_fused_model \
--max-tokens 50 \
--prompt "table: students
columns: Name, Age, School, Grade, Height, Weight
Q: Count how many students there are in ninth grade.
A: "
```
```
SELECT COUNT Name FROM Students WHERE Grade = '9th'
```
### 统计一下九年级有多少学生(九年级的值是9)。
```bash
python -m mlx_lm.generate --model lora_fused_model \
--max-tokens 50 \
--prompt "table: students
columns: Name, Age, School, Grade, Height, Weight
The value for ninth grade is 9.
Q: Count how many students there are in ninth grade.
A: "
```
```bash
python -m mlx_lm.generate --model lora_fused_model \
--max-tokens 50 \
--prompt "table: students
columns: Name, Age, School, Grade, Height, Weight
Q: Count how many students there are in ninth grade.(The value for ninth grade is 9.)
A: "
```
```
SELECT COUNT Name FROM students WHERE Grade = 9
```
附加的提示信息可以轻松添加,不用太在意放置的位置。
## 上传模型到 HuggingFace Hub
1. 加入 [MLX Community](https://huggingface.co/mlx-community) 组织
2. 在 MLX Community 组织中创建一个新的模型 [mlx-community/Mistral-7B-v0.1-LoRA-Text2SQL](https://huggingface.co/mlx-community/Mistral-7B-v0.1-LoRA-Text2SQL)
3. 克隆仓库 [mlx-community/Mistral-7B-v0.1-LoRA-Text2SQL](https://huggingface.co/mlx-community/Mistral-7B-v0.1-LoRA-Text2SQL)
```bash
git clone https://huggingface.co/mlx-community/Mistral-7B-v0.1-LoRA-Text2SQL
```
4. 将生成的模型文件(`lora_fused_model` 目录下的所有文件)复制到仓库目录下
5. 上传模型到 HuggingFace Hub
```bash
git add .
git commit -m "Fine tuning Text2SQL based on Mistral-7B using LoRA on MLX"
git push
```
### git push 错误
1. 不能 push
错误信息:
```
Uploading LFS objects: 0% (0/2), 0 B | 0 B/s, done.
batch response: Authorization error.
error: failed to push some refs to 'https://huggingface.co/mlx-community/Mistral-7B-v0.1-LoRA-Text2SQL'
```
解决方法:
```bash
vim .git/config
```
```conf
[remote "origin"]
url = https://wangjunjian:write_token@huggingface.co/mlx-community/Mistral-7B-v0.1-LoRA-Text2SQL
fetch = +refs/heads/*:refs/remotes/origin/*
```
2. 不能上传大于 5GB 的文件
错误信息:
```
warning: current Git remote contains credentials
batch response:
You need to configure your repository to enable upload of files > 5GB.
Run "huggingface-cli lfs-enable-largefiles ./path/to/your/repo" and try again.
```
解决方法:
```bash
huggingface-cli longin
huggingface-cli lfs-enable-largefiles /Users/junjian/HuggingFace/mlx-community/Mistral-7B-v0.1-LoRA-Text2SQL
```
## 参考资料
- [MLX Community](https://huggingface.co/mlx-community)
- [Fine-Tuning with LoRA or QLoRA](https://github.com/ml-explore/mlx-examples/tree/main/lora)
- [Generate Text with LLMs and MLX](https://github.com/ml-explore/mlx-examples/tree/main/llms)
- [Awesome Text2SQL](https://github.com/eosphoros-ai/Awesome-Text2SQL)
- [Awesome Text2SQL(中文)](https://github.com/eosphoros-ai/Awesome-Text2SQL/blob/main/README.zh.md)
- [Mistral AI](https://huggingface.co/mistralai)
- [A Beginner’s Guide to Fine-Tuning Mistral 7B Instruct Model](https://adithyask.medium.com/a-beginners-guide-to-fine-tuning-mistral-7b-instruct-model-0f39647b20fe)
- [Mistral Instruct 7B Finetuning on MedMCQA Dataset](https://saankhya.medium.com/mistral-instruct-7b-finetuning-on-medmcqa-dataset-6ec2532b1ff1)
- [Fine-tuning Mistral on your own data](https://github.com/brevdev/notebooks/blob/main/mistral-finetune-own-data.ipynb)
- [mlx-examples llms Mistral](https://github.com/ml-explore/mlx-examples/blob/main/llms/mistral/README.md)