Phi-3-small-8k-instruct-AQ4_32 / modeling_phi3_small.py
awni's picture
e242b6bba221d9f5c93c681d53f8330739d0c3539ea52d923c5dfce2d4b0c8fc
918e453 verified
import math
from typing import Any, Dict, Optional, List, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from transformers.modeling_outputs import SequenceClassifierOutputWithPast, CausalLMOutputWithPast, BaseModelOutputWithPast
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging
from transformers.cache_utils import Cache, DynamicCache
from .triton_flash_blocksparse_attn import BlockSparseParams
from .triton_blocksparse_attention_layer import BlockSparseAttentionLayer
from .positional_embedding import RotaryEmbedding
from .configuration_phi3_small import Phi3SmallConfig
# Flash Attention Related Imports
is_flash_attention_available = False
try:
import flash_attn
if int(flash_attn.__version__.split('.')[0]) < 2:
from flash_attn.flash_attn_interface import (
flash_attn_func,
flash_attn_unpadded_kvpacked_func as flash_attn_varlen_kvpacked_func,
)
# rename `max_seqlen`
def flash_attn_varlen_qkvpacked_func(qkv, cu_seqlens, max_seqlen, dropout_p=0.0, **kwargs):
return flash_attn_func(qkv, cu_seqlens, dropout_p=dropout_p, max_s=max_seqlen, **kwargs)
else:
from flash_attn.flash_attn_interface import (
flash_attn_varlen_kvpacked_func,
)
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input
is_flash_attention_available = True
except ImportError:
pass
logger = logging.get_logger(__name__)
LegacyCache = Tuple[Tuple[torch.FloatTensor]]
# Taken from https://github.com/allenai/allennlp/blob/main/allennlp/nn/util.py
def info_value_of_dtype(dtype: torch.dtype):
"""
Returns the `finfo` or `iinfo` object of a given PyTorch data type. Does not allow torch.bool.
"""
if dtype == torch.bool:
raise TypeError("Does not support torch.bool")
elif dtype.is_floating_point:
return torch.finfo(dtype)
else:
return torch.iinfo(dtype)
# Taken from https://github.com/allenai/allennlp/blob/main/allennlp/nn/util.py
def min_value_of_dtype(dtype: torch.dtype):
"""
Returns the minimum value of a given PyTorch data type. Does not allow torch.bool.
"""
return info_value_of_dtype(dtype).min
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
def _get_unpad_data(attention_mask):
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
max_seqlen_in_batch = seqlens_in_batch.max().item()
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
return (
indices,
cu_seqlens,
max_seqlen_in_batch,
)
@torch.jit.script
def quick_gelu(x):
return x * torch.sigmoid(1.702 * x)
@torch.jit.script
def gegelu(input, limit: Optional[float] = None):
a_gelu, a_linear = input[..., ::2], input[..., 1::2]
if limit is not None:
a_gelu = torch.where(
torch.isinf(a_gelu), a_gelu, a_gelu.clamp(min=None, max=limit)
)
a_linear = torch.where(
torch.isinf(a_linear), a_linear, a_linear.clamp(min=-limit, max=limit)
)
out_gelu = quick_gelu(a_gelu)
return out_gelu * (a_linear + 1)
def collapse_first_n_dims(x: torch.Tensor, n: int) -> torch.Tensor:
"""
Collapse the first `n` dimensions of a tensor into a single dimension.
Args:
x (torch.Tensor): The input tensor.
n (int): The number of dimensions to collapse.
Returns:
torch.Tensor: The output tensor.
"""
return x.view(-1, *x.shape[n:])
def pad_tensor_to_next_mult_of(
tensor: torch.Tensor,
dim: int,
n: int,
) -> Tuple[torch.Tensor, int]:
"""
Pads a tensor along a specified dimension to the next multiple of a given number.
Args:
tensor (torch.Tensor): The input tensor.
dim (int): The dimension along which to pad the tensor.
n (int): The number to pad the tensor to the next multiple of.
Returns:
Tuple[torch.Tensor, int]: A tuple containing the padded tensor and the amount of padding added.
"""
residual = tensor.size(dim) % n
if residual == 0:
return tensor, 0
padding = n - residual
padding_tensor = torch.zeros((*tensor.size()[:dim], padding, *tensor.size()[dim + 1:]), device=tensor.device, dtype=tensor.dtype)
return torch.cat([tensor, padding_tensor], dim=dim), padding
def strip_padding_from_tensor(
tensor: torch.Tensor,
dim: int,
residual: int,
) -> torch.Tensor:
"""
Removes padding from a tensor along a specified dimension.
Args:
tensor (torch.Tensor): The input tensor.
dim (int): The dimension along which to remove padding.
residual (int): The amount of padding to remove.
Returns:
torch.Tensor: The tensor with padding removed along the specified dimension.
"""
return torch.narrow(tensor, dim, 0, tensor.size(dim) - residual)
class Phi3SmallMLP(nn.Module):
def __init__(self, config: Phi3SmallConfig):
super().__init__()
self.config = config
assert self.config.hidden_act == "gegelu", "Only `gegelu` is supported for the Phi-3-small model .."
self.hidden_size = config.hidden_size
self.gegelu_limit = config.gegelu_limit
self.intermediate_size = config.intermediate_size
self.up_proj = nn.Linear(self.hidden_size, 2 * self.intermediate_size)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size)
self.dropout = nn.Dropout(config.ffn_dropout_prob)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.dropout(
self.down_proj(
gegelu(self.up_proj(x), limit=self.gegelu_limit)
)
)
class Phi3SmallSelfAttention(nn.Module):
def __init__(self, config: Phi3SmallConfig, layer_idx: Optional[int] = None) -> None:
super().__init__()
self.config = config
self.layer_idx = layer_idx
if layer_idx is None:
logger.warning_once(
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
"when creating this class."
)
self.hidden_size = config.hidden_size
# Number of Query Heads
self.num_heads = config.num_attention_heads
self.head_dim = self.hidden_size // self.num_heads
# Number of Key Value Heads
self.num_key_value_heads = config.num_key_value_heads
self.num_q_per_kv = self.num_heads // self.num_key_value_heads
self.max_position_embeddings = config.max_position_embeddings
self.rope_embedding_base = config.rope_embedding_base
self.rope_position_scale = config.rope_position_scale
self.is_causal = True
self.attention_dropout_rate = config.attention_dropout_prob
norm_factor = None
if config.mup_use_scaling:
norm_factor = self.head_dim / config.mup_attn_multiplier
else:
norm_factor = math.sqrt(self.head_dim)
self.softmax_scale = 1.0 / norm_factor
self.query_key_value = nn.Linear(self.hidden_size, (self.num_heads + 2 * self.num_key_value_heads) * self.head_dim)
self.dense = nn.Linear(self.hidden_size, self.hidden_size)
self.blocksparse_params = None
# layer_idx is 0 indexed because that's what the KV Cache expects.
if self.config.dense_attention_every_n_layers and ((self.layer_idx + 1) % self.config.dense_attention_every_n_layers == 0):
logger.info(
f"Layer {layer_idx + 1} is using dense attention since it is divisible by "
f"{self.config.dense_attention_every_n_layers}"
)
assert is_flash_attention_available, "Flash Attention is not available, but is needed for dense attention"
else:
# BlockSparse related Parameters
self.blocksparse_params = BlockSparseParams.from_config(config)
if self.blocksparse:
active_head_range = None
"""
... note(bapatra)::
In case of tensor parallelism and while using the heterogeneous head patterns,
the active head range needs to be modified based on the tensor parallel rank
and the tensor parallel world size.
This is because in the case of heterogeneous head patterns, the kernel needs to know
which head is on which device, so that it can pick the corresponding blocksparse head
pattern correctly.
Example:
```python
if not self.blocksparse_params.homo_head_pattern:
tp_rank = torch.distributed.get_rank() % tp_world_size
num_heads_per_partition = num_heads // tp_world_size
active_head_range = (tp_rank * num_heads_per_partition, (tp_rank + 1) * num_heads_per_partition)
```
"""
self._blocksparse_layer = BlockSparseAttentionLayer(
n_heads=self.num_heads,
max_seq_len=self.max_position_embeddings,
sparse_block_size=self.blocksparse_params.block_size,
local_blocks=self.blocksparse_params.num_local_blocks,
vert_stride=self.blocksparse_params.vert_stride,
kernel_block_size=self.blocksparse_params.kernel_block_size,
homo_head=self.blocksparse_params.homo_head_pattern,
active_head_range=active_head_range,
)
self.rotary_emb = RotaryEmbedding.from_config(config)
@property
def blocksparse(self):
return self.blocksparse_params is not None
def _split_heads(self, mixed_x_layer: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
bs, sq, _ = mixed_x_layer.size()
r"""
The main idea is that we group tensors as
[bs, sq, (q00, q01, ... q0m, k0, v0), (q10, q11, ... q1m, k1, v1), ... (qn0, qn1, ... qnm, kn, vn)]
That ways, when the MP column sharding happens, this tensor will be sharded keeping all the
queries and keys intact. In order to get the correct qkv, we first break into groups, and then
index into the groups.
"""
intermediate_shape = (bs, sq, -1, (self.num_q_per_kv + 2), self.head_dim)
mixed_x_layer = mixed_x_layer.view(*intermediate_shape)
q = mixed_x_layer[:, :, :, :-2]
k = mixed_x_layer[:, :, :, [-2]]
v = mixed_x_layer[:, :, :, [-1]]
q, k, v = [
rearrange(
x,
"bs sq group nh hn -> bs sq (group nh) hn"
) for x in (q, k, v)
]
return q, k, v
# Copied from transformers.models.mistral.modeling_mistral.MistralFlashAttention2._unpad_input
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
if query_length == kv_seq_len:
query_layer = index_first_axis(
query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k
)
cu_seqlens_q = cu_seqlens_k
max_seqlen_in_batch_q = max_seqlen_in_batch_k
indices_q = indices_k
elif query_length == 1:
max_seqlen_in_batch_q = 1
cu_seqlens_q = torch.arange(
batch_size + 1, dtype=torch.int32, device=query_layer.device
) # There is a memcpy here, that is very bad.
indices_q = cu_seqlens_q[:-1]
query_layer = query_layer.squeeze(1)
else:
# The -q_len: slice assumes left padding.
attention_mask = attention_mask[:, -query_length:]
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
return (
query_layer,
key_layer,
value_layer,
indices_q,
(cu_seqlens_q, cu_seqlens_k),
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
)
def _apply_blocksparse_attention(
self,
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
attention_mask: Optional[torch.LongTensor],
return_attention_probs: bool = False,
) -> torch.Tensor:
"""
Applies blocksparse attention to the input tensors.
Args:
q (torch.Tensor): The query tensor of shape (bs, nqp, seq_len, hn).
k (torch.Tensor): The key tensor of shape (bs, nkp, seq_len, hn).
v (torch.Tensor): The value tensor of shape (bs, nkp, seq_len, hn).
attention_mask (Optional[torch.LongTensor]): The attention mask tensor of shape (bs, seq_len).
return_attention_probs (bool, optional): Whether to return attention probabilities. Defaults to False.
Returns:
torch.Tensor: The context layer tensor of shape (bs, nqp, seq_len, hn).
"""
assert not return_attention_probs, "return_attention_probs is not supported for blocksparse attention"
q, k, v = q.contiguous(), k.contiguous(), v.contiguous()
# shape: (bs, nqp, seq_len, hn)
if torch.is_grad_enabled():
# Training or non-batched inference
context_layer = self._blocksparse_layer(
q=q, k=k, v=v, sm_scale=self.softmax_scale
)
elif attention_mask is None:
if q.size(0) != 1:
logger.warning_once(
"You are attempting to do batched inference without passing the attention mask.\n"
"This is okay if you are running loglikelihood requests. However, if you want to do generation, "
"this probably won't work as expected. Please pass the attention mask to the forward function."
)
context_layer = self._blocksparse_layer(
q=q, k=k, v=v, sm_scale=self.softmax_scale
)
else:
"""
Shapes of tensors are as follows:
q: (bs, nqp, seq_len, hdim)
k: (bs, nkp, seq_len, hdim)
v: (bs, nkp, seq_len, hdim)
We first need to transpose the shapes to fit what the
kernel needs, and the reinvert it back at the end of the operations
"""
assert attention_mask.ndim == 2, "The kernel, like flash-attention-2, only supports 2d attention masks ..."
left_paddings = attention_mask.shape[1] - attention_mask.sum(dim=-1)
# shape: (bs, seq_len, nqp, hdim)
q = q.transpose(1, 2).contiguous()
# shape: (bs, seq_len, nkp, hdim)
k = k.transpose(1, 2).contiguous()
# shape: (bs, seq_len, nkp, hdim)
v = v.transpose(1, 2).contiguous()
context_layer = self._blocksparse_layer(
q=q, k=k, v=v, sm_scale=self.softmax_scale, left_paddings=left_paddings.to(torch.int32)
)
# shape: (bs, nqp, seq_len, hdim)
context_layer = context_layer.transpose(1, 2).contiguous()
return context_layer
def _apply_dense_attention(
self,
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
attention_mask: torch.Tensor,
return_attention_probs: bool = False,
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
"""
Apply dense attention
Args:
q (torch.Tensor):
The query tensor, shape: (bs, num_query_heads, seq_len, head_size)
k (torch.Tensor):
The key tensor, shape: (bs, num_query_heads, seq_len, head_size)
v (torch.Tensor):
The value tensor, shape: (bs, num_query_heads, seq_len, head_size)
return_attention_probs (bool, optional):
Return the attention probabilities. Defaults to False.
Returns:
Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
Return the output of the attention aggregation. If `return_attention_probs` is True, then
also return the attention probabilities
.. note::
Right now, am assuming the expansion for the query key values is already done
outside. But ideally, since Flash attention handles the GQA correctly, we can
avoid doing that.
"""
attention_dropout_prob = self.attention_dropout_rate if self.training else 0.0
# Get into the correct shape for the Flash Attention API
# shape: (bs, seq_len, nqp, hn)
q = q.transpose(1, 2).contiguous()
query_length = q.size(1)
# shape: (bs, seq_len, npq, hn)
k = k.transpose(1, 2).contiguous()
# shape: (bs, seq_len, npq, hn)
v = v.transpose(1, 2).contiguous()
if attention_mask is not None:
causal = q.size(2) == k.size(2)
batch_size = q.shape[0]
flat_q, flat_k, flat_v, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
q, k, v, attention_mask, query_length
)
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
max_seqlen_q, max_seqlen_k = max_seq_lens
flat_kv = torch.cat((flat_k.unsqueeze(1), flat_v.unsqueeze(1)), dim=1)
attn_output_unpad = flash_attn_varlen_kvpacked_func(
q=flat_q,
kv=flat_kv,
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_k=cu_seqlens_k,
max_seqlen_q=max_seqlen_q,
max_seqlen_k=max_seqlen_k,
dropout_p=attention_dropout_prob,
softmax_scale=self.softmax_scale,
causal=causal,
return_attn_probs=return_attention_probs
)
attention_output = pad_input(
attn_output_unpad, indices_q, batch_size, query_length
)
else:
kv = torch.cat((k.unsqueeze(2), v.unsqueeze(2)), dim=2)
cu_seqlens_q = torch.arange(
0, (q.size(0) + 1), device=q.device, dtype=torch.int32
) * q.size(1)
cu_seqlens_kv = torch.arange(
0, (kv.size(0) + 1), device=kv.device, dtype=torch.int32
) * kv.size(1)
max_seqlen_q = q.size(1)
max_seqlen_k = kv.size(1)
attention_output = flash_attn_varlen_kvpacked_func(
q=collapse_first_n_dims(q, 2),
kv=collapse_first_n_dims(kv, 2),
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_k=cu_seqlens_kv,
max_seqlen_q=max_seqlen_q,
max_seqlen_k=max_seqlen_k,
dropout_p=attention_dropout_prob,
softmax_scale=self.softmax_scale,
causal=q.size(1) == kv.size(1),
return_attn_probs=return_attention_probs
)
if return_attention_probs:
(context_layer, attn_probs) = attention_output
context_layer = context_layer.view(q.size(0), q.size(1), -1, q.size(3)).transpose(1, 2).contiguous()
return (context_layer, attn_probs)
context_layer = attention_output
context_layer = context_layer.view(q.size(0), q.size(1), -1, q.size(3)).transpose(1, 2).contiguous()
return context_layer
def expand_kv_to_q_size(self, kv: torch.Tensor, num_q_per_kv: int) -> torch.Tensor:
"""
Expand the key-value tensor to match the size of the query tensor.
Args:
kv (torch.Tensor): The key-value tensor of shape (bsz, nkp, 2, seq_len, hdim).
num_q_per_kv (int): The number of queries per key-value.
Returns:
torch.Tensor: The expanded key-value tensor of shape (bsz, nqp, 2, seq_len, hdim).
Where nqp = num_q_per_kv * nkp
.. note(bapatra)::
Right now, I am using a repeat_interleave to expand the kv to the size of q.
This incurs a memory penalty, since the tensors are actually copied.
TODO: If this does yield benefits, then potentially we can use the re-written
flash attention kernel that can handle GQA.
"""
repeats = torch.tensor([num_q_per_kv] * kv.size(1)).to(kv.device)
total = repeats.sum()
expanded_kv = torch.repeat_interleave(
kv,
repeats=repeats,
dim=1,
output_size=total
)
return expanded_kv
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""
The forward function of the Self Attention Layer.
Args:
hidden_states (torch.Tensor):
The input tensor of shape (bs, q_len, h).
attention_mask (Optional[torch.Tensor], optional):
The attention mask tensor of shape (bs, seq_len). This is the 2D attention mask tensor as is standard in the flash-attention
kernel.
Defaults to None.
position_ids (Optional[torch.LongTensor], optional):
The position ids tensor of shape (bs, q_len). Defaults to None. Unused by the function.
past_key_value (Optional[Cache], optional):
The previous kv cache values. Defaults to None.
output_attentions (bool, optional):
Whether to return the attention scores. Defaults to False.
.. note::
For the blocksparse attention kernel, we do not support returning the attention scores.
use_cache (bool, optional):
Whether to use the cache for storing the kv. Defaults to False.
Returns:
Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
The output tensor of shape (bs, q_len, h),
the attention scores tensor of shape (bs, nqp, q_len, seq_len) if `output_attentions` is True,
and the updated cache values if `use_cache` is True.
Notations:
------------
bs: batch size
sq_len: sequence length of the entire sequence
q_len: sequence length of the query
cache_sq: sequence length in the cache
If there is no cache then cache_sq = 0
and sq_len = q_len
otherwise sq_len = q_len + cache_sq
h: hidden size
nq: number of query heads
nkv: number of key heads
hn: hidden size per head
hn = h // nq
nqp: number of query heads (per MP partition)
nqp = nq // (num mp partitions)
nkvp: number of key-value heads (per MP partition)
nkvp = nk // (num mp partitions)
"""
# shape: (bs, q_len, h)
bsz, q_len, _ = hidden_states.size()
# shape: (bs, q_len, (nqp + 2 * nkvp) * hn)
mixed_x_layer = self.query_key_value(hidden_states)
# shape: (bs, q_len, nqp, hn), shape: (bs, q_len, nkvp, hn), shape: (bs, q_len, nkvp, hn)
q, k, v = self._split_heads(mixed_x_layer)
# shape: (bs, qnp, q_len, hn)
query_states = q.permute(0, 2, 1, 3).contiguous()
# shape: (bs, nkvp, q_len, hn)
key_states = k.permute(0, 2, 1, 3).contiguous()
# shape: (bs, nkvp, q_len, hn)
value_states = v.permute(0, 2, 1, 3).contiguous()
kv_seq_len = key_states.shape[-2]
if past_key_values is not None:
if self.layer_idx is None:
raise ValueError(
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
"with a layer index."
)
if self.rotary_emb is not None:
seqlen_offset = past_key_values.get_usable_length(kv_seq_len, layer_idx=self.layer_idx)
# shape: (bs, nqp, q_len, hn), shape: (bs, nkvp, q_len, hn)
query_states, key_states = self.rotary_emb(
query_states, key_states, seq_dimension=2, seqlen_offset=seqlen_offset
)
key_states, value_states = past_key_values.update(key_states=key_states, value_states=value_states, layer_idx=self.layer_idx)
else:
# In this case seq_len = q_len and cache_sq = 0
if self.rotary_emb is not None:
# shape: (bs, nqp, seq_len, hn), shape: (bs, nkvp, seq_len, hn)
query_states, key_states = self.rotary_emb(query_states, key_states, seq_dimension=2)
# shape: (bs, nkvp, 2, seq_len, hn)
kv_states = torch.cat((key_states.unsqueeze(2), value_states.unsqueeze(2)), dim=2)
# shape: (bs, nqp, 2, seq_len, hn)
expanded_kv_states = self.expand_kv_to_q_size(kv_states, num_q_per_kv=self.num_q_per_kv)
# shape: (bs, nqp, seq_len, hn), shape: (bs, nqp, seq_len, hn)
expanded_key_states, expanded_value_states = expanded_kv_states[:, :, 0], expanded_kv_states[:, :, 1]
if self.blocksparse:
attn_function_output = self._apply_blocksparse_attention(
q=query_states,
k=expanded_key_states,
v=expanded_value_states,
attention_mask=attention_mask,
return_attention_probs=output_attentions
)
else:
attn_function_output = self._apply_dense_attention(
q=query_states,
k=expanded_key_states,
v=expanded_value_states,
attention_mask=attention_mask,
return_attention_probs=output_attentions
)
attn_weights = None
if output_attentions:
attn_output, attn_weights = attn_function_output
else:
# shape: (bs, nqp, seq_len, hn)
attn_output = attn_function_output
# shape: (bs, seq_len, nqp, hn)
attn_output = attn_output.transpose(1, 2).contiguous()
# shape: (bs, seq_len, h)
attn_output = attn_output.view(bsz, q_len, -1)
attn_output = self.dense(attn_output)
return attn_output, attn_weights, past_key_values
class Phi3SmallDecoderLayer(nn.Module):
def __init__(self, config: Phi3SmallConfig, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = Phi3SmallSelfAttention(config, layer_idx)
self.mlp = Phi3SmallMLP(config)
self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_epsilon)
self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_epsilon)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
output_attentions: Optional[bool] = None,
use_cache: Optional[bool] = None,
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor], Optional[Cache]]:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights, present_key_values = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
if use_cache:
outputs += (present_key_values,)
return outputs
class Phi3SmallPreTrainedModel(PreTrainedModel):
config_class = Phi3SmallConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["Phi3SmallDecoderLayer"]
skip_keys_device_placement = "past_key_values"
_supports_flash_attn_2 = True
_supports_sdpa = False
_supports_cache_class = True
def _init_weights(self, module: nn.Module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
# The output projection on the decoder attention layer as well as the down_proj in the MLP are scaled
# differently (dubbed `output_layer_init_method` in the Megatron code). This is replicated here
for name, p in module.named_parameters():
if any(x in name for x in ("c_proj.weight", "down_proj.weight", "o_proj.weight")):
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
p.data.normal_(mean=0.0, std=(self.config.initializer_range / math.sqrt(2 * self.config.num_hidden_layers)))
class Phi3SmallModel(Phi3SmallPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.config = config
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
# Embedding Dropout
self.embedding_dropout = nn.Dropout(config.embedding_dropout_prob)
# MuP Embedding scaling
self.mup_embedding_multiplier = config.mup_embedding_multiplier
self.layers = nn.ModuleList([Phi3SmallDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)])
self.final_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_epsilon)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
@property
def pad_sequence_to_multiple_of_64(self):
# We only need to do this for the backward pass. So only required
# when we are in the context of generating gradients
return self.config.pad_sequence_to_multiple_of_64 and torch.is_grad_enabled()
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[Cache, LegacyCache]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
batch_size, seq_length = input_ids.shape
elif inputs_embeds is not None:
batch_size, seq_length, _ = inputs_embeds.shape
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
past_key_values_length = 0
if use_cache:
use_legacy_cache = not isinstance(past_key_values, Cache)
if use_legacy_cache:
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
past_key_values_length = past_key_values.get_usable_length(seq_length)
if position_ids is None:
device = input_ids.device if input_ids is not None else inputs_embeds.device
position_ids = torch.arange(
past_key_values_length, past_key_values_length + seq_length, dtype=torch.long, device=device
)
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
else:
position_ids = position_ids.view(-1, seq_length).long()
if attention_mask is not None:
if batch_size <= 0:
raise ValueError("batch_size has to be defined and > 0")
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
inputs_embeds = self.embedding_dropout(inputs_embeds)
if self.mup_embedding_multiplier is not None and self.mup_embedding_multiplier > 0.0:
inputs_embeds = inputs_embeds * self.mup_embedding_multiplier
residual = 0
if self.pad_sequence_to_multiple_of_64:
# note(bapatra): Since we don't particularly use the position_ids and the attention mask
# we don't need to pad them
inputs_embeds, residual = pad_tensor_to_next_mult_of(tensor=inputs_embeds, dim=1, n=64)
hidden_states = inputs_embeds
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = None
for decoder_layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
attention_mask,
position_ids,
past_key_values,
output_attentions,
use_cache,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if use_cache:
# Following the Mistral schema for layer return values
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.final_layernorm(hidden_states)
if residual > 0:
hidden_states = strip_padding_from_tensor(tensor=hidden_states, dim=1, residual=residual)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = None
if use_cache:
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
if not return_dict:
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
class Phi3SmallForCausalLM(Phi3SmallPreTrainedModel):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.model = Phi3SmallModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, self.vocab_size, bias=False)
self.mup_width_multiplier = config.mup_width_multiplier
# Create the mask for the dummy tokens in the vocabulary
dummy_token_indices = config.dummy_token_indices
dummy_tokens_mask = torch.zeros(self.vocab_size).bool()
dummy_tokens_mask[dummy_token_indices] = True
# shape: (vocab_size,)
self.register_buffer("dummy_tokens_mask", dummy_tokens_mask, persistent=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, value):
self.lm_head = value
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
logits = logits.float()
if self.mup_width_multiplier:
logits = logits / self.mup_width_multiplier
logits = logits.masked_fill(self.dummy_tokens_mask, min_value_of_dtype(logits.dtype))
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = nn.CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def prepare_inputs_for_generation(
self,
input_ids: torch.LongTensor,
past_key_values: Optional[List[torch.FloatTensor]] = None,
attention_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
**kwargs
) -> Dict[str, Any]:
# only last token for inputs_ids if past is defined in kwargs
if past_key_values:
input_ids = input_ids[:, -1].unsqueeze(-1)
position_ids = kwargs.get("position_ids", None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -1].unsqueeze(-1)
else:
position_ids = None
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
model_inputs.update(
{
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"position_ids": position_ids,
"attention_mask": attention_mask,
}
)
return model_inputs
# Copied from transformers.models.mistral.modeling_mistral.MistralForSequenceClassification with Mistral -> Phi3Small
class Phi3SmallForSequenceClassification(Phi3SmallPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.model = Phi3SmallModel(config)
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.model(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
logits = self.score(hidden_states)
if input_ids is not None:
batch_size = input_ids.shape[0]
else:
batch_size = inputs_embeds.shape[0]
if self.config.pad_token_id is None and batch_size != 1:
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
if self.config.pad_token_id is None:
sequence_lengths = -1
else:
if input_ids is not None:
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
sequence_lengths = sequence_lengths % input_ids.shape[-1]
sequence_lengths = sequence_lengths.to(logits.device)
else:
sequence_lengths = -1
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
loss = None
if labels is not None:
labels = labels.to(logits.device)
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = nn.MSELoss()
if self.num_labels == 1:
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(pooled_logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = nn.BCEWithLogitsLoss()
loss = loss_fct(pooled_logits, labels)
if not return_dict:
output = (pooled_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutputWithPast(
loss=loss,
logits=pooled_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)