prince-canuma
commited on
Commit
•
0ac0549
1
Parent(s):
3f2f7bb
Upload folder using huggingface_hub
Browse files- configuration_phi3_v.py +217 -0
- image_embedding_phi3_v.py +301 -0
- image_processing_phi3_v.py +274 -0
- modeling_phi3_v.py +1633 -0
- sample_inference.py +108 -0
configuration_phi3_v.py
ADDED
@@ -0,0 +1,217 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
""" Phi-3-V model configuration"""
|
17 |
+
|
18 |
+
|
19 |
+
from transformers.configuration_utils import PretrainedConfig
|
20 |
+
from transformers.utils import logging
|
21 |
+
|
22 |
+
|
23 |
+
logger = logging.get_logger(__name__)
|
24 |
+
|
25 |
+
PHI3V_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
26 |
+
"microsoft/Phi-3-vision-128k-instruct": "https://huggingface.co/microsoft/Phi-3-vision-128k-instruct/resolve/main/config.json",
|
27 |
+
}
|
28 |
+
|
29 |
+
|
30 |
+
class Phi3VConfig(PretrainedConfig):
|
31 |
+
r"""
|
32 |
+
This is the configuration class to store the configuration of a [`Phi3VModel`]. It is used to instantiate a Phi-3
|
33 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
34 |
+
defaults will yield a similar configuration to that of the
|
35 |
+
[microsoft/Phi-3-vision-128k-instruct](https://huggingface.co/microsoft/Phi-3-vision-128k-instruct).
|
36 |
+
|
37 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
38 |
+
documentation from [`PretrainedConfig`] for more information.
|
39 |
+
|
40 |
+
Args:
|
41 |
+
vocab_size (`int`, *optional*, defaults to 32064):
|
42 |
+
Vocabulary size of the Phi-3-V model. Defines the number of different tokens that can be represented by the
|
43 |
+
`inputs_ids` passed when calling [`Phi3VModel`].
|
44 |
+
hidden_size (`int`, *optional*, defaults to 3072):
|
45 |
+
Dimension of the hidden representations.
|
46 |
+
intermediate_size (`int`, *optional*, defaults to 8192):
|
47 |
+
Dimension of the MLP representations.
|
48 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
49 |
+
Number of hidden layers in the Transformer decoder.
|
50 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
51 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
52 |
+
num_key_value_heads (`int`, *optional*):
|
53 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
54 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
55 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
56 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
57 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
58 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
59 |
+
`num_attention_heads`.
|
60 |
+
resid_pdrop (`float`, *optional*, defaults to 0.0):
|
61 |
+
Dropout probability for mlp outputs.
|
62 |
+
embd_pdrop (`int`, *optional*, defaults to 0.0):
|
63 |
+
The dropout ratio for the embeddings.
|
64 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
65 |
+
The dropout ratio after computing the attention scores.
|
66 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
67 |
+
The non-linear activation function (function or string) in the decoder.
|
68 |
+
max_position_embeddings (`int`, *optional*, defaults to 4096):
|
69 |
+
The maximum sequence length that this model might ever be used with.
|
70 |
+
original_max_position_embeddings (`int`, *optional*, defaults to 4096):
|
71 |
+
The maximum sequence length that this model was trained with. This is used to determine the size of the
|
72 |
+
original RoPE embeddings when using long scaling.
|
73 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
74 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
75 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
|
76 |
+
The epsilon value used for the RMSNorm.
|
77 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
78 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
79 |
+
relevant if `config.is_decoder=True`. Whether to tie weight embeddings or not.
|
80 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
81 |
+
Whether to tie weight embeddings
|
82 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
83 |
+
The base period of the RoPE embeddings.
|
84 |
+
rope_scaling (`dict`, *optional*):
|
85 |
+
The scaling strategy for the RoPE embeddings. If `None`, no scaling is applied. If a dictionary, it must
|
86 |
+
contain the following keys: `type`, `short_factor` and `long_factor`. The `type` must be either `su` or `yarn` and
|
87 |
+
the `short_factor` and `long_factor` must be lists of numbers with the same length as the hidden size
|
88 |
+
divided by the number of attention heads divided by 2.
|
89 |
+
bos_token_id (`int`, *optional*, defaults to 1):
|
90 |
+
The id of the "beginning-of-sequence" token.
|
91 |
+
eos_token_id (`int`, *optional*, defaults to 32000):
|
92 |
+
The id of the "end-of-sequence" token.
|
93 |
+
pad_token_id (`int`, *optional*, defaults to 32000):
|
94 |
+
The id of the padding token.
|
95 |
+
sliding_window (`int`, *optional*):
|
96 |
+
Sliding window attention window size. If `None`, no sliding window is applied.
|
97 |
+
embd_layer (`str`, *optional*, defaults to `"default"`):
|
98 |
+
The embedding layer to use. Can be either `"default"` or `"image"`. "default" uses the standard embedding for text.
|
99 |
+
|
100 |
+
Example:
|
101 |
+
|
102 |
+
```python
|
103 |
+
>>> from transformers import Phi3VModel, Phi3VConfig
|
104 |
+
|
105 |
+
>>> # Initializing a Phi-3-V style configuration
|
106 |
+
>>> configuration = Phi3Config.from_pretrained("microsoft/Phi-3-vision-128k-instruct")
|
107 |
+
|
108 |
+
>>> # Initializing a model from the configuration
|
109 |
+
>>> model = Phi3VModel(configuration)
|
110 |
+
|
111 |
+
>>> # Accessing the model configuration
|
112 |
+
>>> configuration = model.config
|
113 |
+
```"""
|
114 |
+
|
115 |
+
model_type = "phi3_v"
|
116 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
117 |
+
|
118 |
+
def __init__(
|
119 |
+
self,
|
120 |
+
vocab_size=32064,
|
121 |
+
hidden_size=3072,
|
122 |
+
intermediate_size=8192,
|
123 |
+
num_hidden_layers=32,
|
124 |
+
num_attention_heads=32,
|
125 |
+
num_key_value_heads=None,
|
126 |
+
resid_pdrop=0.0,
|
127 |
+
embd_pdrop=0.0,
|
128 |
+
attention_dropout=0.0,
|
129 |
+
hidden_act="silu",
|
130 |
+
max_position_embeddings=4096,
|
131 |
+
original_max_position_embeddings=4096,
|
132 |
+
initializer_range=0.02,
|
133 |
+
rms_norm_eps=1e-5,
|
134 |
+
use_cache=True,
|
135 |
+
tie_word_embeddings=False,
|
136 |
+
rope_theta=10000.0,
|
137 |
+
rope_scaling=None,
|
138 |
+
bos_token_id=1,
|
139 |
+
eos_token_id=32000,
|
140 |
+
pad_token_id=32000,
|
141 |
+
sliding_window=None,
|
142 |
+
embd_layer: str = "default",
|
143 |
+
**kwargs,
|
144 |
+
):
|
145 |
+
self.vocab_size = vocab_size
|
146 |
+
self.hidden_size = hidden_size
|
147 |
+
self.intermediate_size = intermediate_size
|
148 |
+
self.num_hidden_layers = num_hidden_layers
|
149 |
+
self.num_attention_heads = num_attention_heads
|
150 |
+
|
151 |
+
if num_key_value_heads is None:
|
152 |
+
num_key_value_heads = num_attention_heads
|
153 |
+
|
154 |
+
self.num_key_value_heads = num_key_value_heads
|
155 |
+
self.resid_pdrop = resid_pdrop
|
156 |
+
self.embd_pdrop = embd_pdrop
|
157 |
+
self.attention_dropout = attention_dropout
|
158 |
+
self.hidden_act = hidden_act
|
159 |
+
self.max_position_embeddings = max_position_embeddings
|
160 |
+
self.original_max_position_embeddings = original_max_position_embeddings
|
161 |
+
self.initializer_range = initializer_range
|
162 |
+
self.rms_norm_eps = rms_norm_eps
|
163 |
+
self.use_cache = use_cache
|
164 |
+
self.rope_theta = rope_theta
|
165 |
+
self.rope_scaling = rope_scaling
|
166 |
+
self._rope_scaling_validation()
|
167 |
+
self.sliding_window = sliding_window
|
168 |
+
self.embd_layer = embd_layer
|
169 |
+
|
170 |
+
|
171 |
+
super().__init__(
|
172 |
+
bos_token_id=bos_token_id,
|
173 |
+
eos_token_id=eos_token_id,
|
174 |
+
pad_token_id=pad_token_id,
|
175 |
+
tie_word_embeddings=tie_word_embeddings,
|
176 |
+
**kwargs,
|
177 |
+
)
|
178 |
+
|
179 |
+
def _rope_scaling_validation(self):
|
180 |
+
"""
|
181 |
+
Validate the `rope_scaling` configuration.
|
182 |
+
"""
|
183 |
+
if self.rope_scaling is None:
|
184 |
+
return
|
185 |
+
|
186 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 3:
|
187 |
+
raise ValueError(
|
188 |
+
"`rope_scaling` must be a dictionary with three fields, `type`, `short_factor` and `long_factor`, "
|
189 |
+
f"got {self.rope_scaling}"
|
190 |
+
)
|
191 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
192 |
+
rope_scaling_short_factor = self.rope_scaling.get("short_factor", None)
|
193 |
+
rope_scaling_long_factor = self.rope_scaling.get("long_factor", None)
|
194 |
+
if rope_scaling_type is None or rope_scaling_type not in ["su", "yarn"]:
|
195 |
+
raise ValueError(f"`rope_scaling`'s type field must be one of ['su', 'yarn'], got {rope_scaling_type}")
|
196 |
+
if not (
|
197 |
+
isinstance(rope_scaling_short_factor, list)
|
198 |
+
and all(isinstance(x, (int, float)) for x in rope_scaling_short_factor)
|
199 |
+
):
|
200 |
+
raise ValueError(
|
201 |
+
f"`rope_scaling`'s short_factor field must be a list of numbers, got {rope_scaling_short_factor}"
|
202 |
+
)
|
203 |
+
if not len(rope_scaling_short_factor) == self.hidden_size // self.num_attention_heads // 2:
|
204 |
+
raise ValueError(
|
205 |
+
f"`rope_scaling`'s short_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_short_factor)}"
|
206 |
+
)
|
207 |
+
if not (
|
208 |
+
isinstance(rope_scaling_long_factor, list)
|
209 |
+
and all(isinstance(x, (int, float)) for x in rope_scaling_long_factor)
|
210 |
+
):
|
211 |
+
raise ValueError(
|
212 |
+
f"`rope_scaling`'s long_factor field must be a list of numbers, got {rope_scaling_long_factor}"
|
213 |
+
)
|
214 |
+
if not len(rope_scaling_long_factor) == self.hidden_size // self.num_attention_heads // 2:
|
215 |
+
raise ValueError(
|
216 |
+
f"`rope_scaling`'s long_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_long_factor)}"
|
217 |
+
)
|
image_embedding_phi3_v.py
ADDED
@@ -0,0 +1,301 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import math
|
17 |
+
import torch
|
18 |
+
import torch.nn as nn
|
19 |
+
from transformers import CLIPVisionModel, PretrainedConfig
|
20 |
+
from transformers import CLIPVisionConfig
|
21 |
+
from transformers.utils import logging
|
22 |
+
from datetime import datetime
|
23 |
+
|
24 |
+
logger = logging.get_logger(__name__)
|
25 |
+
|
26 |
+
CLIP_VIT_LARGE_PATCH14_336_CONFIG = CLIPVisionConfig(
|
27 |
+
attention_dropout=0.0,
|
28 |
+
dropout=0.0,
|
29 |
+
hidden_act="quick_gelu",
|
30 |
+
hidden_size=1024,
|
31 |
+
image_size=336,
|
32 |
+
initializer_factor=1.0,
|
33 |
+
initializer_range=0.02,
|
34 |
+
intermediate_size=4096,
|
35 |
+
layer_norm_eps=1e-05,
|
36 |
+
num_attention_heads=16,
|
37 |
+
num_channels=3,
|
38 |
+
num_hidden_layers=24,
|
39 |
+
patch_size=14,
|
40 |
+
projection_dim=768
|
41 |
+
)
|
42 |
+
|
43 |
+
class Phi3ImageEmbedding(nn.Module):
|
44 |
+
"""Phi3 Image embedding."""
|
45 |
+
|
46 |
+
def __init__(self, config: PretrainedConfig, wte=None, **kwargs) -> None:
|
47 |
+
super().__init__()
|
48 |
+
|
49 |
+
# n_embed or hidden_size
|
50 |
+
hidden_size = config.n_embd if hasattr(config, 'n_embd') else config.hidden_size
|
51 |
+
if hasattr(config, 'embd_pdrop') or hasattr(config, 'embed_pdrop'):
|
52 |
+
embd_drop = config.embd_pdrop if hasattr(config, 'embd_pdrop') else config.embed_pdrop
|
53 |
+
self.drop = nn.Dropout(embd_drop)
|
54 |
+
else:
|
55 |
+
self.drop = None
|
56 |
+
|
57 |
+
self.wte = wte
|
58 |
+
|
59 |
+
if isinstance(config.img_processor, dict) and config.img_processor.get('name', None) == 'clip_vision_model':
|
60 |
+
assert 'model_name' in config.img_processor, 'model_name must be provided for CLIPVisionModel'
|
61 |
+
assert 'image_dim_out' in config.img_processor, 'image_dim_out must be provided for CLIPVisionModel'
|
62 |
+
assert 'num_img_tokens' in config.img_processor, 'num_img_tokens must be provided for CLIPVisionModel'
|
63 |
+
assert config.img_processor['model_name'] == 'openai/clip-vit-large-patch14-336'
|
64 |
+
clip_config = CLIP_VIT_LARGE_PATCH14_336_CONFIG
|
65 |
+
self.img_processor = CLIPVisionModel(clip_config)
|
66 |
+
image_dim_out = config.img_processor['image_dim_out']
|
67 |
+
self.num_img_tokens = config.img_processor['num_img_tokens']
|
68 |
+
else:
|
69 |
+
raise NotImplementedError(f'img_processor = {config.img_processor}, not implemented')
|
70 |
+
|
71 |
+
self.image_dim_out = image_dim_out
|
72 |
+
self.img_sizes = None
|
73 |
+
|
74 |
+
# global_gn and sub_gn for hd transform, serves as line separator
|
75 |
+
self.use_hd_transform = kwargs.get('use_hd_transform', False)
|
76 |
+
self.with_learnable_separator = kwargs.get('with_learnable_separator', False)
|
77 |
+
self.hd_transform_order = kwargs.get('hd_transform_order', 'glb_sub')
|
78 |
+
# with_hd_transform and with_learnable_separator should have same value
|
79 |
+
assert self.use_hd_transform == self.with_learnable_separator, 'use_hd_transform and with_learnable_separator should have same value'
|
80 |
+
if self.with_learnable_separator:
|
81 |
+
assert self.use_hd_transform, 'learnable separator is only for hd transform'
|
82 |
+
# 1024 * 4, merge spatial to channel dimension
|
83 |
+
self.glb_GN = nn.Parameter(torch.zeros([1, 1, self.image_dim_out * 4]))
|
84 |
+
self.sub_GN = nn.Parameter(torch.zeros([1, 1, 1, self.image_dim_out * 4]))
|
85 |
+
logger.info(f'learnable separator enabled for hd transform, hd_transform_order = {self.hd_transform_order}')
|
86 |
+
|
87 |
+
projection_cls = kwargs.get('projection_cls', 'linear')
|
88 |
+
if projection_cls == 'linear':
|
89 |
+
self.img_projection = nn.Linear(image_dim_out, hidden_size)
|
90 |
+
elif projection_cls == 'mlp' and self.use_hd_transform:
|
91 |
+
dim_projection = hidden_size
|
92 |
+
depth = 2
|
93 |
+
layers = [nn.Linear(image_dim_out * 4, dim_projection)]
|
94 |
+
for _ in range(1, depth):
|
95 |
+
layers.extend([nn.GELU(),
|
96 |
+
nn.Linear(dim_projection, dim_projection)])
|
97 |
+
self.img_projection = nn.Sequential(*layers)
|
98 |
+
elif projection_cls == 'mlp':
|
99 |
+
dim_projection = hidden_size
|
100 |
+
depth = 2
|
101 |
+
layers = [nn.Linear(image_dim_out, dim_projection)]
|
102 |
+
for _ in range(1, depth):
|
103 |
+
layers.extend([nn.GELU(),
|
104 |
+
nn.Linear(dim_projection, dim_projection)])
|
105 |
+
self.img_projection = nn.Sequential(*layers)
|
106 |
+
else:
|
107 |
+
raise NotImplementedError(f'projection_cls = {projection_cls}, not implemented')
|
108 |
+
|
109 |
+
self.vocab_size = config.vocab_size
|
110 |
+
self.img_features = None
|
111 |
+
|
112 |
+
if isinstance(config.img_processor, dict):
|
113 |
+
self.layer_idx = config.img_processor.get('layer_idx', -2)
|
114 |
+
self.type_feature = config.img_processor.get('type_feature', 'patch')
|
115 |
+
else:
|
116 |
+
self.layer_idx = -2
|
117 |
+
self.type_feature = 'patch'
|
118 |
+
|
119 |
+
|
120 |
+
def set_img_features(self, img_features: torch.FloatTensor) -> None:
|
121 |
+
self.img_features = img_features
|
122 |
+
|
123 |
+
def set_img_sizes(self, img_sizes: torch.LongTensor) -> None:
|
124 |
+
self.img_sizes = img_sizes
|
125 |
+
|
126 |
+
def get_img_features(self, img_embeds: torch.FloatTensor) -> torch.FloatTensor:
|
127 |
+
LAYER_IDX = self.layer_idx
|
128 |
+
TYPE_FEATURE = self.type_feature
|
129 |
+
|
130 |
+
img_processor_output = self.img_processor(img_embeds, output_hidden_states=True)
|
131 |
+
img_feature = img_processor_output.hidden_states[LAYER_IDX]
|
132 |
+
|
133 |
+
if TYPE_FEATURE == "patch":
|
134 |
+
patch_feature = img_feature[:, 1:]
|
135 |
+
return patch_feature
|
136 |
+
|
137 |
+
if TYPE_FEATURE == "cls_patch":
|
138 |
+
return img_feature
|
139 |
+
|
140 |
+
raise NotImplementedError
|
141 |
+
|
142 |
+
def forward(self, input_ids: torch.LongTensor, pixel_values: torch.FloatTensor, image_sizes=None) -> torch.FloatTensor:
|
143 |
+
|
144 |
+
MAX_INPUT_ID = int(1e9)
|
145 |
+
img_embeds = pixel_values
|
146 |
+
img_sizes = image_sizes
|
147 |
+
|
148 |
+
if self.img_features is not None:
|
149 |
+
img_embeds = self.img_features.clone()
|
150 |
+
self.img_features = None
|
151 |
+
|
152 |
+
if self.img_sizes is not None:
|
153 |
+
img_sizes = self.img_sizes
|
154 |
+
|
155 |
+
input_shape = input_ids.size()
|
156 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
157 |
+
|
158 |
+
with torch.no_grad():
|
159 |
+
positions = torch.nonzero((input_ids < 0) & (input_ids > -MAX_INPUT_ID), as_tuple=False)
|
160 |
+
|
161 |
+
select = False
|
162 |
+
|
163 |
+
if isinstance(self.img_projection, nn.Sequential):
|
164 |
+
target_device = self.img_projection[0].bias.device
|
165 |
+
target_dtype = self.img_projection[0].bias.dtype
|
166 |
+
else: # It's a single nn.Linear layer
|
167 |
+
target_device = self.img_projection.bias.device
|
168 |
+
target_dtype = self.img_projection.bias.dtype
|
169 |
+
|
170 |
+
if len(positions.tolist()) > 0:
|
171 |
+
with torch.no_grad():
|
172 |
+
g_values = abs(input_ids[positions[:, 0], positions[:, 1]])
|
173 |
+
|
174 |
+
if self.use_hd_transform and img_sizes is not None and len(img_sizes):
|
175 |
+
hd_transform = True
|
176 |
+
assert img_embeds.ndim == 5, f'img_embeds size: {img_embeds.size()}, expect 5D tensor for hd transform'
|
177 |
+
# img_embeds: (num_images, max_num_crops, 3, H, W)
|
178 |
+
# img_sizes: (num_images, 2).view(1, -1)
|
179 |
+
|
180 |
+
start_time = datetime.now()
|
181 |
+
bs = img_embeds.shape[0]
|
182 |
+
# Nx(HW)xC
|
183 |
+
img_features = self.get_img_features(img_embeds.flatten(0, 1))
|
184 |
+
base_feat_height = base_feat_width = int(img_features.shape[1] ** 0.5)
|
185 |
+
|
186 |
+
assert base_feat_height == 24 and base_feat_width == 24, f'base_feat_height: {base_feat_height}, base_feat_width: {base_feat_width}, expect 24x24 features for hd transform'
|
187 |
+
|
188 |
+
# bs x max_num_crops x (24x24) x C
|
189 |
+
img_features = img_features.view(bs, -1, base_feat_height * base_feat_width, self.image_dim_out)
|
190 |
+
C = self.image_dim_out
|
191 |
+
H = base_feat_height
|
192 |
+
|
193 |
+
output_imgs = []
|
194 |
+
output_len = []
|
195 |
+
# training is tensor, inference is list
|
196 |
+
if isinstance(img_sizes, torch.Tensor):
|
197 |
+
img_sizes = img_sizes.view(-1, 2)
|
198 |
+
for _bs in range(bs):
|
199 |
+
h, w = img_sizes[_bs]
|
200 |
+
h = h // 336
|
201 |
+
w = w // 336
|
202 |
+
B_ = h * w
|
203 |
+
|
204 |
+
# 1 x (24x24) x 1024
|
205 |
+
global_img_feature = img_features[_bs, :1]
|
206 |
+
|
207 |
+
# 1 x 12 x 12 x 4096
|
208 |
+
glb_img = global_img_feature.reshape(1,H,H,C).reshape(1,H//2,2,H//2,2,C).contiguous().permute(0,1,3,2,4,5).reshape(1,H//2,H//2,4*C).contiguous()
|
209 |
+
temp_glb_GN = self.sub_GN.repeat(1, H//2, 1, 1)
|
210 |
+
|
211 |
+
# 1 x 156 x 4096
|
212 |
+
glb_img = torch.cat([glb_img, temp_glb_GN], dim=2).reshape(1,-1,4*C)
|
213 |
+
|
214 |
+
# (max_num_crops-1) x (12x12) x C
|
215 |
+
sub_img = img_features[_bs, 1:]
|
216 |
+
# 16x574x1024
|
217 |
+
# get rid of padding sub_img
|
218 |
+
sub_img = sub_img[:B_]
|
219 |
+
|
220 |
+
# (num_crops, 12, 2, 12, 2, 1024) -> (num_crops, 12, 12, 2, 2, 1024) -> (num_crops, 12*12, 4*1024)
|
221 |
+
sub_img = sub_img.reshape(B_,H,H,C).reshape(B_,H//2,2,H//2,2,C).contiguous().permute(0,1,3,2,4,5).reshape(B_,-1,4*C).contiguous()
|
222 |
+
sub_img = sub_img.reshape(1, h, w, 12, 12, -1).permute(0,1,3,2,4,5).reshape(1,h*12,w*12,4*C)
|
223 |
+
temp_sub_GN = self.sub_GN.repeat(1, h*12, 1, 1)
|
224 |
+
sub_img = torch.cat([sub_img, temp_sub_GN], dim=2).reshape(1,-1,4*C)
|
225 |
+
# (1, num_img_tokens, 1024*4)
|
226 |
+
|
227 |
+
# glb + sub
|
228 |
+
if self.hd_transform_order == 'glb_sub':
|
229 |
+
output_imgs.append(torch.cat([glb_img, self.glb_GN, sub_img], dim=1))
|
230 |
+
elif self.hd_transform_order == 'sub_glb':
|
231 |
+
output_imgs.append(torch.cat([sub_img, self.glb_GN, glb_img], dim=1))
|
232 |
+
else:
|
233 |
+
raise NotImplementedError(f'hd_transform_order = {self.hd_transform_order}, not implemented')
|
234 |
+
|
235 |
+
temp_len = int((h*w+1)*144 + 1 + (h+1)*12)
|
236 |
+
assert temp_len == output_imgs[-1].shape[1], f'temp_len: {temp_len}, output_imgs[-1].shape[1]: {output_imgs[-1].shape[1]}'
|
237 |
+
output_len.append(temp_len)
|
238 |
+
|
239 |
+
num_img_tokens = output_len
|
240 |
+
img_set_tensor = []
|
241 |
+
for _output_img in output_imgs:
|
242 |
+
img_feature_proj = self.img_projection(_output_img.to(target_device).to(target_dtype))
|
243 |
+
img_set_tensor.append(img_feature_proj)
|
244 |
+
logger.info(f'img_embeds size: {img_embeds.size()}, image sizes: {img_sizes} loading time {datetime.now() - start_time}')
|
245 |
+
elif img_embeds.ndim == 4:
|
246 |
+
selected_g_values = g_values[::self.num_img_tokens]
|
247 |
+
assert len(img_embeds) == len(selected_g_values), f'img_embeds size: {img_embeds.size()}, selected_g_values size: {len(selected_g_values)}, selected_g_value {selected_g_values}'
|
248 |
+
start_time = datetime.now()
|
249 |
+
tt = (
|
250 |
+
self.get_img_features(img_embeds)
|
251 |
+
.to(target_device)
|
252 |
+
.to(target_dtype)
|
253 |
+
.reshape(-1, self.image_dim_out)
|
254 |
+
)
|
255 |
+
logger.info(f'img_embeds size: {img_embeds.size()}, loading time {datetime.now() - start_time}')
|
256 |
+
img_set_tensor = self.img_projection(tt) # adapted visual features.
|
257 |
+
elif img_embeds.ndim == 3:
|
258 |
+
selected_g_values = g_values[::self.num_img_tokens]
|
259 |
+
assert len(img_embeds) == len(selected_g_values), f'img_embeds size: {img_embeds.size()}, selected_g_values size: {len(selected_g_values)}, selected_g_value {selected_g_values}'
|
260 |
+
tt = (
|
261 |
+
img_embeds
|
262 |
+
.to(target_device)
|
263 |
+
.to(target_dtype)
|
264 |
+
.view(-1, self.image_dim_out)
|
265 |
+
)
|
266 |
+
img_set_tensor = self.img_projection(tt) # adapted visual features.
|
267 |
+
else:
|
268 |
+
raise NotImplementedError
|
269 |
+
select = True
|
270 |
+
|
271 |
+
with torch.no_grad():
|
272 |
+
input_ids.clamp_min_(0).clamp_max_(self.vocab_size)
|
273 |
+
|
274 |
+
hidden_states = self.wte(input_ids)
|
275 |
+
|
276 |
+
if select:
|
277 |
+
if hd_transform:
|
278 |
+
idx = 0
|
279 |
+
for i, cnt in enumerate(num_img_tokens):
|
280 |
+
hidden_states[positions[idx, 0], positions[idx, 1] : positions[idx, 1] + cnt] = (
|
281 |
+
img_set_tensor[i]
|
282 |
+
.to(hidden_states.dtype)
|
283 |
+
.to(hidden_states.device)
|
284 |
+
)
|
285 |
+
idx += cnt
|
286 |
+
else:
|
287 |
+
idx = 0
|
288 |
+
assert len(selected_g_values) * self.num_img_tokens == len(img_set_tensor), f'len(selected_g_values) * self.num_img_tokens = {len(selected_g_values) * self.num_img_tokens}, len(img_set_tensor) = {len(img_set_tensor)}'
|
289 |
+
for i, g in enumerate(selected_g_values):
|
290 |
+
cnt = self.num_img_tokens
|
291 |
+
hidden_states[positions[idx, 0], positions[idx, 1] : positions[idx, 1] + cnt] = (
|
292 |
+
img_set_tensor[i * cnt : (i + 1) * cnt]
|
293 |
+
.to(hidden_states.dtype)
|
294 |
+
.to(hidden_states.device)
|
295 |
+
)
|
296 |
+
idx += cnt
|
297 |
+
|
298 |
+
if self.drop is not None:
|
299 |
+
hidden_states = self.drop(hidden_states)
|
300 |
+
|
301 |
+
return hidden_states
|
image_processing_phi3_v.py
ADDED
@@ -0,0 +1,274 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
"""Image processor class for Phi3-V."""
|
17 |
+
|
18 |
+
from typing import List, Optional, Union
|
19 |
+
|
20 |
+
import numpy as np
|
21 |
+
|
22 |
+
from transformers.image_processing_utils import BaseImageProcessor, BatchFeature
|
23 |
+
from transformers.image_transforms import (
|
24 |
+
convert_to_rgb,
|
25 |
+
)
|
26 |
+
from transformers.image_utils import (
|
27 |
+
OPENAI_CLIP_MEAN,
|
28 |
+
OPENAI_CLIP_STD,
|
29 |
+
ImageInput,
|
30 |
+
make_list_of_images,
|
31 |
+
valid_images,
|
32 |
+
)
|
33 |
+
from transformers.utils import TensorType, is_vision_available, logging
|
34 |
+
|
35 |
+
from transformers import AutoImageProcessor
|
36 |
+
|
37 |
+
logger = logging.get_logger(__name__)
|
38 |
+
|
39 |
+
|
40 |
+
if is_vision_available():
|
41 |
+
from PIL import Image
|
42 |
+
|
43 |
+
import torch
|
44 |
+
import torchvision
|
45 |
+
|
46 |
+
def padding_336(b):
|
47 |
+
width, height = b.size
|
48 |
+
tar = int(np.ceil(height / 336) * 336)
|
49 |
+
top_padding = int((tar - height)/2)
|
50 |
+
bottom_padding = tar - height - top_padding
|
51 |
+
left_padding = 0
|
52 |
+
right_padding = 0
|
53 |
+
b = torchvision.transforms.functional.pad(b, [left_padding, top_padding, right_padding, bottom_padding], fill=[255,255,255])
|
54 |
+
|
55 |
+
return b
|
56 |
+
|
57 |
+
def calc_padded_size(width, height, padding_unit=336):
|
58 |
+
target_height = int(np.ceil(height / padding_unit) * padding_unit)
|
59 |
+
top_padding = int((target_height - height) / 2)
|
60 |
+
bottom_padding = target_height - height - top_padding
|
61 |
+
left_padding = 0
|
62 |
+
right_padding = 0
|
63 |
+
padded_width = width + left_padding + right_padding
|
64 |
+
padded_height = height + top_padding + bottom_padding
|
65 |
+
return padded_width, padded_height
|
66 |
+
|
67 |
+
def HD_transform(img, hd_num=16):
|
68 |
+
width, height = img.size
|
69 |
+
trans = False
|
70 |
+
if width < height:
|
71 |
+
img = img.transpose(Image.TRANSPOSE)
|
72 |
+
trans = True
|
73 |
+
width, height = img.size
|
74 |
+
ratio = (width/ height)
|
75 |
+
scale = 1
|
76 |
+
while scale*np.ceil(scale/ratio) <= hd_num:
|
77 |
+
scale += 1
|
78 |
+
scale -= 1
|
79 |
+
new_w = int(scale * 336)
|
80 |
+
new_h = int(new_w / ratio)
|
81 |
+
|
82 |
+
img = torchvision.transforms.functional.resize(img, [new_h, new_w],)
|
83 |
+
img = padding_336(img)
|
84 |
+
width, height = img.size
|
85 |
+
if trans:
|
86 |
+
img = img.transpose(Image.TRANSPOSE)
|
87 |
+
|
88 |
+
return img
|
89 |
+
|
90 |
+
def calc_hd_transform_size(width, height, hd_num=16):
|
91 |
+
transposed = False
|
92 |
+
if width < height:
|
93 |
+
width, height = height, width
|
94 |
+
transposed = True
|
95 |
+
|
96 |
+
ratio = width / height
|
97 |
+
scale = 1
|
98 |
+
while scale * np.ceil(scale / ratio) <= hd_num:
|
99 |
+
scale += 1
|
100 |
+
scale -= 1
|
101 |
+
|
102 |
+
new_width = int(scale * 336)
|
103 |
+
new_height = int(new_width / ratio)
|
104 |
+
|
105 |
+
padded_width, padded_height = calc_padded_size(new_width, new_height)
|
106 |
+
|
107 |
+
if transposed:
|
108 |
+
padded_width, padded_height = padded_height, padded_width
|
109 |
+
|
110 |
+
return padded_width, padded_height
|
111 |
+
|
112 |
+
def pad_to_max_num_crops_tensor(images, max_crops=5):
|
113 |
+
"""
|
114 |
+
images: B x 3 x H x W, B<=max_crops
|
115 |
+
"""
|
116 |
+
B, _, H, W = images.shape
|
117 |
+
if B < max_crops:
|
118 |
+
pad = torch.zeros(max_crops - B, 3, H, W, dtype=images.dtype, device=images.device)
|
119 |
+
images = torch.cat([images, pad], dim=0)
|
120 |
+
return images
|
121 |
+
|
122 |
+
|
123 |
+
class Phi3VImageProcessor(BaseImageProcessor):
|
124 |
+
r"""
|
125 |
+
Constructs a Phi3 image processor. Based on [`CLIPImageProcessor`] with incorporation of additional techniques
|
126 |
+
for processing high resolution images as explained in the [InternLM-XComposer2-4KHD](https://arxiv.org/pdf/2404.06512)
|
127 |
+
|
128 |
+
Args:
|
129 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `[0.48145466, 0.4578275, 0.40821073]`):
|
130 |
+
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
|
131 |
+
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
|
132 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `[0.26862954, 0.26130258, 0.27577711]`):
|
133 |
+
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
|
134 |
+
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
|
135 |
+
Can be overridden by the `image_std` parameter in the `preprocess` method.
|
136 |
+
do_convert_rgb (`bool`, *optional*, defaults to `True`):
|
137 |
+
Whether to convert the image to RGB.
|
138 |
+
"""
|
139 |
+
|
140 |
+
model_input_names = ["pixel_values"]
|
141 |
+
|
142 |
+
def __init__(
|
143 |
+
self,
|
144 |
+
num_crops: int = 1,
|
145 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
146 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
147 |
+
do_convert_rgb: bool = True,
|
148 |
+
**kwargs,
|
149 |
+
) -> None:
|
150 |
+
super().__init__(**kwargs)
|
151 |
+
self.num_crops = num_crops
|
152 |
+
self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
|
153 |
+
self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
|
154 |
+
self.do_convert_rgb = do_convert_rgb
|
155 |
+
|
156 |
+
def calc_num_image_tokens(
|
157 |
+
self,
|
158 |
+
images: ImageInput
|
159 |
+
):
|
160 |
+
""" Calculate the number of image tokens for each image.
|
161 |
+
Args:
|
162 |
+
images (`ImageInput`):
|
163 |
+
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
|
164 |
+
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
|
165 |
+
"""
|
166 |
+
images = make_list_of_images(images)
|
167 |
+
|
168 |
+
if not valid_images(images):
|
169 |
+
raise ValueError(
|
170 |
+
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
171 |
+
"torch.Tensor, tf.Tensor or jax.ndarray."
|
172 |
+
)
|
173 |
+
|
174 |
+
images = [image.convert('RGB') for image in images]
|
175 |
+
# (H, W, C)
|
176 |
+
elems = [HD_transform(im, hd_num = self.num_crops) for im in images]
|
177 |
+
shapes = [[im.size[1], im.size[0]] for im in elems]
|
178 |
+
num_img_tokens = [int((h//336*w//336+1)*144 + 1 + (h//336+1)*12) for h, w in shapes]
|
179 |
+
return num_img_tokens
|
180 |
+
|
181 |
+
def calc_num_image_tokens_from_image_size(self, width, height):
|
182 |
+
"""
|
183 |
+
Calculate the number of image tokens for a given image size.
|
184 |
+
Args:
|
185 |
+
width (`int`): Width of the image.
|
186 |
+
height (`int`): Height of the image.
|
187 |
+
"""
|
188 |
+
new_width, new_height = calc_hd_transform_size(width, height, hd_num=self.num_crops)
|
189 |
+
num_img_tokens = int((new_height // 336 * new_width // 336 + 1) * 144 + 1 + (new_height // 336 + 1) * 12)
|
190 |
+
return num_img_tokens
|
191 |
+
|
192 |
+
def preprocess(
|
193 |
+
self,
|
194 |
+
images: ImageInput,
|
195 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
196 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
197 |
+
do_convert_rgb: bool = None,
|
198 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
199 |
+
):
|
200 |
+
"""
|
201 |
+
Args:
|
202 |
+
images (`ImageInput`):
|
203 |
+
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
|
204 |
+
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
|
205 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
|
206 |
+
Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
|
207 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
|
208 |
+
Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to
|
209 |
+
`True`.
|
210 |
+
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
|
211 |
+
Whether to convert the image to RGB.
|
212 |
+
return_tensors (`str` or `TensorType`, *optional*):
|
213 |
+
The type of tensors to return. Can be one of:
|
214 |
+
- Unset: Return a list of `np.ndarray`.
|
215 |
+
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
|
216 |
+
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
|
217 |
+
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
|
218 |
+
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
|
219 |
+
"""
|
220 |
+
image_mean = image_mean if image_mean is not None else self.image_mean
|
221 |
+
image_std = image_std if image_std is not None else self.image_std
|
222 |
+
do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
|
223 |
+
|
224 |
+
images = make_list_of_images(images)
|
225 |
+
|
226 |
+
if not valid_images(images):
|
227 |
+
raise ValueError(
|
228 |
+
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
229 |
+
"torch.Tensor, tf.Tensor or jax.ndarray."
|
230 |
+
)
|
231 |
+
|
232 |
+
if do_convert_rgb:
|
233 |
+
images = [convert_to_rgb(image) for image in images]
|
234 |
+
|
235 |
+
image_sizes = []
|
236 |
+
img_processor = torchvision.transforms.Compose([
|
237 |
+
torchvision.transforms.ToTensor(),
|
238 |
+
torchvision.transforms.Normalize(image_mean, image_std)
|
239 |
+
])
|
240 |
+
|
241 |
+
# PIL images
|
242 |
+
# HD_transform pad images to size of multiiply of 336, 336
|
243 |
+
# convert to RGB first
|
244 |
+
images = [image.convert('RGB') for image in images]
|
245 |
+
elems = [HD_transform(im, hd_num = self.num_crops) for im in images]
|
246 |
+
# tensor transform and normalize
|
247 |
+
hd_images = [img_processor(im) for im in elems]
|
248 |
+
# create global image
|
249 |
+
global_image = [torch.nn.functional.interpolate(im.unsqueeze(0).float(), size=(336, 336), mode='bicubic',).to(im.dtype) for im in hd_images]
|
250 |
+
|
251 |
+
# [(3, h, w)], where h, w is multiple of 336
|
252 |
+
shapes = [[im.size(1), im.size(2)] for im in hd_images]
|
253 |
+
num_img_tokens = [int((h//336*w//336+1)*144 + 1 + (h//336+1)*12) for h, w in shapes]
|
254 |
+
# reshape to channel dimension -> (num_images, num_crops, 3, 336, 336)
|
255 |
+
# (1, 3, h//336, 336, w//336, 336) -> (1, h//336, w//336, 3, 336, 336) -> (h//336*w//336, 3, 336, 336)
|
256 |
+
hd_images_reshape = [im.reshape(1, 3, h//336, 336, w//336, 336).permute(0,2,4,1,3,5).reshape(-1, 3, 336, 336).contiguous() for im, (h, w) in zip(hd_images, shapes)]
|
257 |
+
# concat global image and local image
|
258 |
+
hd_images_reshape = [torch.cat([_global_image] + [_im], dim=0) for _global_image, _im in zip(global_image, hd_images_reshape)]
|
259 |
+
|
260 |
+
# pad to max_num_crops
|
261 |
+
image_transformed = [pad_to_max_num_crops_tensor(im, self.num_crops+1) for im in hd_images_reshape]
|
262 |
+
image_transformed = torch.stack(image_transformed, dim=0)
|
263 |
+
image_sizes = [torch.LongTensor(_shapes) for _shapes in shapes]
|
264 |
+
padded_images = image_transformed
|
265 |
+
image_sizes = shapes
|
266 |
+
|
267 |
+
data = {"pixel_values": padded_images,
|
268 |
+
"image_sizes": image_sizes,
|
269 |
+
"num_img_tokens": num_img_tokens
|
270 |
+
}
|
271 |
+
|
272 |
+
return BatchFeature(data=data, tensor_type=return_tensors)
|
273 |
+
|
274 |
+
AutoImageProcessor.register("Phi3VImageProcessor", Phi3VImageProcessor)
|
modeling_phi3_v.py
ADDED
@@ -0,0 +1,1633 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
""" PyTorch Phi-3-V model."""
|
17 |
+
|
18 |
+
import inspect
|
19 |
+
import math
|
20 |
+
import warnings
|
21 |
+
from typing import List, Optional, Tuple, Union
|
22 |
+
|
23 |
+
import torch
|
24 |
+
import torch.nn.functional as F
|
25 |
+
import torch.utils.checkpoint
|
26 |
+
from torch import nn
|
27 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
28 |
+
|
29 |
+
from transformers.activations import ACT2FN
|
30 |
+
from transformers.cache_utils import Cache, DynamicCache
|
31 |
+
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
|
32 |
+
from transformers.modeling_outputs import (
|
33 |
+
BaseModelOutputWithPast,
|
34 |
+
CausalLMOutputWithPast,
|
35 |
+
SequenceClassifierOutputWithPast,
|
36 |
+
TokenClassifierOutput,
|
37 |
+
)
|
38 |
+
from transformers.modeling_utils import PreTrainedModel
|
39 |
+
from transformers.utils import (
|
40 |
+
add_code_sample_docstrings,
|
41 |
+
add_start_docstrings,
|
42 |
+
add_start_docstrings_to_model_forward,
|
43 |
+
is_flash_attn_greater_or_equal_2_10,
|
44 |
+
logging,
|
45 |
+
replace_return_docstrings,
|
46 |
+
)
|
47 |
+
from .configuration_phi3_v import Phi3VConfig
|
48 |
+
from .image_embedding_phi3_v import Phi3ImageEmbedding
|
49 |
+
|
50 |
+
|
51 |
+
try:
|
52 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
53 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
54 |
+
|
55 |
+
_flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters)
|
56 |
+
except ImportError:
|
57 |
+
pass
|
58 |
+
|
59 |
+
logger = logging.get_logger(__name__)
|
60 |
+
|
61 |
+
_CHECKPOINT_FOR_DOC = "microsoft/Phi-3-vision-128k-instruct"
|
62 |
+
_CONFIG_FOR_DOC = "Phi3VConfig"
|
63 |
+
|
64 |
+
PHI3V_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
65 |
+
"microsoft/Phi-3-vision-128k-instruct",
|
66 |
+
# See all Phi-3 models at https://huggingface.co/models?filter=Phi-3
|
67 |
+
]
|
68 |
+
|
69 |
+
|
70 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Phi3
|
71 |
+
class Phi3RMSNorm(nn.Module):
|
72 |
+
def __init__(self, hidden_size, eps=1e-6):
|
73 |
+
"""
|
74 |
+
Phi3RMSNorm is equivalent to T5LayerNorm
|
75 |
+
"""
|
76 |
+
super().__init__()
|
77 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
78 |
+
self.variance_epsilon = eps
|
79 |
+
|
80 |
+
def forward(self, hidden_states):
|
81 |
+
input_dtype = hidden_states.dtype
|
82 |
+
hidden_states = hidden_states.to(torch.float32)
|
83 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
84 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
85 |
+
return self.weight * hidden_states.to(input_dtype)
|
86 |
+
|
87 |
+
|
88 |
+
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
89 |
+
def _get_unpad_data(attention_mask):
|
90 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
91 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
92 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
93 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
94 |
+
return (
|
95 |
+
indices,
|
96 |
+
cu_seqlens,
|
97 |
+
max_seqlen_in_batch,
|
98 |
+
)
|
99 |
+
|
100 |
+
|
101 |
+
# Copied from transformers.models.gemma.modeling_gemma.GemmaRotaryEmbedding with gemma->phi3, Gemma->Phi3
|
102 |
+
class Phi3RotaryEmbedding(nn.Module):
|
103 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
104 |
+
super().__init__()
|
105 |
+
|
106 |
+
self.dim = dim
|
107 |
+
self.max_position_embeddings = max_position_embeddings
|
108 |
+
self.base = base
|
109 |
+
self.register_buffer("inv_freq", None, persistent=False)
|
110 |
+
|
111 |
+
@torch.no_grad()
|
112 |
+
def forward(self, x, position_ids, seq_len=None):
|
113 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
114 |
+
if self.inv_freq is None:
|
115 |
+
self.inv_freq = 1.0 / (
|
116 |
+
self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim)
|
117 |
+
)
|
118 |
+
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
119 |
+
position_ids_expanded = position_ids[:, None, :].float()
|
120 |
+
# Force float32 since bfloat16 loses precision on long contexts
|
121 |
+
# See https://github.com/huggingface/transformers/pull/29285
|
122 |
+
device_type = x.device.type
|
123 |
+
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
|
124 |
+
with torch.autocast(device_type=device_type, enabled=False):
|
125 |
+
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
126 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
127 |
+
cos = emb.cos()
|
128 |
+
sin = emb.sin()
|
129 |
+
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
130 |
+
|
131 |
+
|
132 |
+
class Phi3SuScaledRotaryEmbedding(Phi3RotaryEmbedding):
|
133 |
+
def __init__(self, dim, config, device=None):
|
134 |
+
super().__init__(dim, config.max_position_embeddings, config.rope_theta, device)
|
135 |
+
|
136 |
+
self.short_factor = config.rope_scaling["short_factor"]
|
137 |
+
self.long_factor = config.rope_scaling["long_factor"]
|
138 |
+
self.original_max_position_embeddings = config.original_max_position_embeddings
|
139 |
+
|
140 |
+
@torch.no_grad()
|
141 |
+
def forward(self, x, position_ids, seq_len=None):
|
142 |
+
seq_len = torch.max(position_ids) + 1
|
143 |
+
if seq_len > self.original_max_position_embeddings:
|
144 |
+
ext_factors = torch.tensor(self.long_factor, dtype=torch.float32, device=x.device)
|
145 |
+
else:
|
146 |
+
ext_factors = torch.tensor(self.short_factor, dtype=torch.float32, device=x.device)
|
147 |
+
|
148 |
+
inv_freq_shape = torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim
|
149 |
+
self.inv_freq = 1.0 / (ext_factors * self.base**inv_freq_shape)
|
150 |
+
|
151 |
+
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
152 |
+
position_ids_expanded = position_ids[:, None, :].float()
|
153 |
+
|
154 |
+
# Force float32 since bfloat16 loses precision on long contexts
|
155 |
+
# See https://github.com/huggingface/transformers/pull/29285
|
156 |
+
device_type = x.device.type
|
157 |
+
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
|
158 |
+
with torch.autocast(device_type=device_type, enabled=False):
|
159 |
+
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
160 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
161 |
+
|
162 |
+
scale = self.max_position_embeddings / self.original_max_position_embeddings
|
163 |
+
if scale <= 1.0:
|
164 |
+
scaling_factor = 1.0
|
165 |
+
else:
|
166 |
+
scaling_factor = math.sqrt(1 + math.log(scale) / math.log(self.original_max_position_embeddings))
|
167 |
+
|
168 |
+
cos = emb.cos() * scaling_factor
|
169 |
+
sin = emb.sin() * scaling_factor
|
170 |
+
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
171 |
+
|
172 |
+
|
173 |
+
class Phi3YarnScaledRotaryEmbedding(Phi3RotaryEmbedding):
|
174 |
+
def __init__(self, dim, config, device=None):
|
175 |
+
super().__init__(dim, config.max_position_embeddings, config.rope_theta, device)
|
176 |
+
|
177 |
+
self.short_factor = config.rope_scaling["short_factor"]
|
178 |
+
self.long_factor = config.rope_scaling["long_factor"]
|
179 |
+
self.original_max_position_embeddings = config.original_max_position_embeddings
|
180 |
+
|
181 |
+
@torch.no_grad()
|
182 |
+
def forward(self, x, position_ids, seq_len=None):
|
183 |
+
seq_len = torch.max(position_ids) + 1
|
184 |
+
if seq_len > self.original_max_position_embeddings:
|
185 |
+
ext_factors = torch.tensor(self.long_factor, dtype=torch.float32, device=x.device)
|
186 |
+
else:
|
187 |
+
ext_factors = torch.tensor(self.short_factor, dtype=torch.float32, device=x.device)
|
188 |
+
|
189 |
+
inv_freq_shape = torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim
|
190 |
+
self.inv_freq = 1.0 / (ext_factors * self.base**inv_freq_shape)
|
191 |
+
|
192 |
+
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
193 |
+
position_ids_expanded = position_ids[:, None, :].float()
|
194 |
+
|
195 |
+
# Force float32 since bfloat16 loses precision on long contexts
|
196 |
+
# See https://github.com/huggingface/transformers/pull/29285
|
197 |
+
device_type = x.device.type
|
198 |
+
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
|
199 |
+
with torch.autocast(device_type=device_type, enabled=False):
|
200 |
+
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
201 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
202 |
+
|
203 |
+
scale = self.max_position_embeddings / self.original_max_position_embeddings
|
204 |
+
if scale <= 1.0:
|
205 |
+
scaling_factor = 1.0
|
206 |
+
else:
|
207 |
+
scaling_factor = 0.1 * math.log(scale) + 1.0
|
208 |
+
|
209 |
+
cos = emb.cos() * scaling_factor
|
210 |
+
sin = emb.sin() * scaling_factor
|
211 |
+
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
212 |
+
|
213 |
+
|
214 |
+
# Copied from transformers.models.llama.modeling_llama.rotate_half
|
215 |
+
def rotate_half(x):
|
216 |
+
"""Rotates half the hidden dims of the input."""
|
217 |
+
x1 = x[..., : x.shape[-1] // 2]
|
218 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
219 |
+
return torch.cat((-x2, x1), dim=-1)
|
220 |
+
|
221 |
+
|
222 |
+
# Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
|
223 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
224 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
225 |
+
|
226 |
+
Args:
|
227 |
+
q (`torch.Tensor`): The query tensor.
|
228 |
+
k (`torch.Tensor`): The key tensor.
|
229 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
230 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
231 |
+
position_ids (`torch.Tensor`, *optional*):
|
232 |
+
Deprecated and unused.
|
233 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
234 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
235 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
236 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
237 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
238 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
239 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
240 |
+
Returns:
|
241 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
242 |
+
"""
|
243 |
+
cos = cos.unsqueeze(unsqueeze_dim)
|
244 |
+
sin = sin.unsqueeze(unsqueeze_dim)
|
245 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
246 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
247 |
+
return q_embed, k_embed
|
248 |
+
|
249 |
+
|
250 |
+
class Phi3MLP(nn.Module):
|
251 |
+
def __init__(self, config):
|
252 |
+
super().__init__()
|
253 |
+
|
254 |
+
self.config = config
|
255 |
+
self.gate_up_proj = nn.Linear(config.hidden_size, 2 * config.intermediate_size, bias=False)
|
256 |
+
self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
|
257 |
+
|
258 |
+
self.activation_fn = ACT2FN[config.hidden_act]
|
259 |
+
|
260 |
+
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
|
261 |
+
up_states = self.gate_up_proj(hidden_states)
|
262 |
+
|
263 |
+
gate, up_states = up_states.chunk(2, dim=-1)
|
264 |
+
up_states = up_states * self.activation_fn(gate)
|
265 |
+
|
266 |
+
return self.down_proj(up_states)
|
267 |
+
|
268 |
+
|
269 |
+
# Copied from transformers.models.llama.modeling_llama.repeat_kv with llama->phi
|
270 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
271 |
+
"""
|
272 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
273 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
274 |
+
"""
|
275 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
276 |
+
if n_rep == 1:
|
277 |
+
return hidden_states
|
278 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
279 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
280 |
+
|
281 |
+
|
282 |
+
class Phi3Attention(nn.Module):
|
283 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
284 |
+
|
285 |
+
def __init__(self, config: Phi3VConfig, layer_idx: Optional[int] = None):
|
286 |
+
super().__init__()
|
287 |
+
self.config = config
|
288 |
+
self.layer_idx = layer_idx
|
289 |
+
if layer_idx is None:
|
290 |
+
logger.warning_once(
|
291 |
+
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
|
292 |
+
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
|
293 |
+
"when creating this class."
|
294 |
+
)
|
295 |
+
|
296 |
+
self.attention_dropout = config.attention_dropout
|
297 |
+
self.hidden_size = config.hidden_size
|
298 |
+
self.num_heads = config.num_attention_heads
|
299 |
+
self.head_dim = self.hidden_size // self.num_heads
|
300 |
+
self.num_key_value_heads = config.num_key_value_heads
|
301 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
302 |
+
self.max_position_embeddings = config.max_position_embeddings
|
303 |
+
self.original_max_position_embeddings = config.original_max_position_embeddings
|
304 |
+
self.rope_theta = config.rope_theta
|
305 |
+
self.rope_scaling = config.rope_scaling
|
306 |
+
self.is_causal = True
|
307 |
+
|
308 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
309 |
+
raise ValueError(
|
310 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
311 |
+
f" and `num_heads`: {self.num_heads})."
|
312 |
+
)
|
313 |
+
|
314 |
+
op_size = self.num_heads * self.head_dim + 2 * (self.num_key_value_heads * self.head_dim)
|
315 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
316 |
+
self.qkv_proj = nn.Linear(self.hidden_size, op_size, bias=False)
|
317 |
+
self._init_rope()
|
318 |
+
|
319 |
+
def _init_rope(self):
|
320 |
+
if self.rope_scaling is None:
|
321 |
+
self.rotary_emb = Phi3RotaryEmbedding(
|
322 |
+
self.head_dim,
|
323 |
+
max_position_embeddings=self.max_position_embeddings,
|
324 |
+
base=self.rope_theta,
|
325 |
+
)
|
326 |
+
else:
|
327 |
+
scaling_type = self.config.rope_scaling["type"]
|
328 |
+
if scaling_type == "su":
|
329 |
+
self.rotary_emb = Phi3SuScaledRotaryEmbedding(self.head_dim, self.config)
|
330 |
+
elif scaling_type == "yarn":
|
331 |
+
self.rotary_emb = Phi3YarnScaledRotaryEmbedding(self.head_dim, self.config)
|
332 |
+
else:
|
333 |
+
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
|
334 |
+
|
335 |
+
def forward(
|
336 |
+
self,
|
337 |
+
hidden_states: torch.Tensor,
|
338 |
+
attention_mask: Optional[torch.Tensor] = None,
|
339 |
+
position_ids: Optional[torch.LongTensor] = None,
|
340 |
+
past_key_value: Optional[Cache] = None,
|
341 |
+
output_attentions: bool = False,
|
342 |
+
use_cache: bool = False,
|
343 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
344 |
+
logger.warning_once("You are not running the flash-attention implementation, expect numerical differences.")
|
345 |
+
|
346 |
+
bsz, q_len, _ = hidden_states.size()
|
347 |
+
|
348 |
+
qkv = self.qkv_proj(hidden_states)
|
349 |
+
query_pos = self.num_heads * self.head_dim
|
350 |
+
query_states = qkv[..., :query_pos]
|
351 |
+
key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim]
|
352 |
+
value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :]
|
353 |
+
|
354 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
355 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
356 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
357 |
+
|
358 |
+
kv_seq_len = key_states.shape[-2]
|
359 |
+
if past_key_value is not None:
|
360 |
+
if self.layer_idx is None:
|
361 |
+
raise ValueError(
|
362 |
+
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
|
363 |
+
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
|
364 |
+
"with a layer index."
|
365 |
+
)
|
366 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
367 |
+
cos, sin = self.rotary_emb(value_states, position_ids, seq_len=kv_seq_len)
|
368 |
+
|
369 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
370 |
+
|
371 |
+
if past_key_value is not None:
|
372 |
+
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
373 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
374 |
+
|
375 |
+
# repeat k/v heads if n_kv_heads < n_heads
|
376 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
377 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
378 |
+
|
379 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
380 |
+
|
381 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
382 |
+
raise ValueError(
|
383 |
+
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
384 |
+
f" {attn_weights.size()}"
|
385 |
+
)
|
386 |
+
|
387 |
+
if attention_mask is not None:
|
388 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
389 |
+
raise ValueError(
|
390 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
391 |
+
)
|
392 |
+
attn_weights = attn_weights + attention_mask
|
393 |
+
|
394 |
+
# upcast attention to fp32
|
395 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(value_states.dtype)
|
396 |
+
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
|
397 |
+
|
398 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
399 |
+
|
400 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
401 |
+
raise ValueError(
|
402 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
403 |
+
f" {attn_output.size()}"
|
404 |
+
)
|
405 |
+
|
406 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
407 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
408 |
+
|
409 |
+
attn_output = self.o_proj(attn_output)
|
410 |
+
|
411 |
+
if not output_attentions:
|
412 |
+
attn_weights = None
|
413 |
+
|
414 |
+
return attn_output, attn_weights, past_key_value
|
415 |
+
|
416 |
+
|
417 |
+
class Phi3FlashAttention2(Phi3Attention):
|
418 |
+
"""
|
419 |
+
Phi-3 flash attention module. This module inherits from `Phi3Attention` as the weights of the module stays
|
420 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
421 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
422 |
+
"""
|
423 |
+
|
424 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
|
425 |
+
def __init__(self, *args, **kwargs):
|
426 |
+
super().__init__(*args, **kwargs)
|
427 |
+
|
428 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
429 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
430 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
431 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
432 |
+
|
433 |
+
def forward(
|
434 |
+
self,
|
435 |
+
hidden_states: torch.Tensor,
|
436 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
437 |
+
position_ids: Optional[torch.LongTensor] = None,
|
438 |
+
past_key_value: Optional[Cache] = None,
|
439 |
+
output_attentions: bool = False,
|
440 |
+
use_cache: bool = False,
|
441 |
+
**kwargs,
|
442 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
443 |
+
# Phi3FlashAttention2 attention does not support output_attentions
|
444 |
+
|
445 |
+
if not _flash_supports_window_size:
|
446 |
+
logger.warning_once(
|
447 |
+
"The current flash attention version does not support sliding window attention. Please use `attn_implementation='eager'` or upgrade flash-attn library."
|
448 |
+
)
|
449 |
+
raise ValueError("The current flash attention version does not support sliding window attention.")
|
450 |
+
|
451 |
+
output_attentions = False
|
452 |
+
|
453 |
+
if "padding_mask" in kwargs:
|
454 |
+
warnings.warn(
|
455 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
456 |
+
)
|
457 |
+
|
458 |
+
# overwrite attention_mask with padding_mask
|
459 |
+
attention_mask = kwargs.pop("padding_mask")
|
460 |
+
|
461 |
+
bsz, q_len, _ = hidden_states.size()
|
462 |
+
|
463 |
+
qkv = self.qkv_proj(hidden_states)
|
464 |
+
query_pos = self.num_heads * self.head_dim
|
465 |
+
query_states = qkv[..., :query_pos]
|
466 |
+
key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim]
|
467 |
+
value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :]
|
468 |
+
|
469 |
+
# Flash attention requires the input to have the shape
|
470 |
+
# batch_size x seq_length x head_dim x hidden_dim
|
471 |
+
# therefore we just need to keep the original shape
|
472 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
473 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
474 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
475 |
+
|
476 |
+
kv_seq_len = key_states.shape[-2]
|
477 |
+
if past_key_value is not None:
|
478 |
+
if self.layer_idx is None:
|
479 |
+
raise ValueError(
|
480 |
+
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
|
481 |
+
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
|
482 |
+
"with a layer index."
|
483 |
+
)
|
484 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
485 |
+
|
486 |
+
# Because the input can be padded, the absolute sequence length depends on the max position id.
|
487 |
+
rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1
|
488 |
+
cos, sin = self.rotary_emb(value_states, position_ids, seq_len=rotary_seq_len)
|
489 |
+
|
490 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
491 |
+
|
492 |
+
use_sliding_windows = (
|
493 |
+
_flash_supports_window_size
|
494 |
+
and getattr(self.config, "sliding_window", None) is not None
|
495 |
+
and kv_seq_len > self.config.sliding_window
|
496 |
+
)
|
497 |
+
|
498 |
+
if past_key_value is not None:
|
499 |
+
# Activate slicing cache only if the config has a value `sliding_windows` attribute
|
500 |
+
cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0
|
501 |
+
if (
|
502 |
+
getattr(self.config, "sliding_window", None) is not None
|
503 |
+
and kv_seq_len > self.config.sliding_window
|
504 |
+
and cache_has_contents
|
505 |
+
):
|
506 |
+
slicing_tokens = 1 - self.config.sliding_window
|
507 |
+
|
508 |
+
past_key = past_key_value[self.layer_idx][0]
|
509 |
+
past_value = past_key_value[self.layer_idx][1]
|
510 |
+
|
511 |
+
past_key = past_key[:, :, slicing_tokens:, :].contiguous()
|
512 |
+
past_value = past_value[:, :, slicing_tokens:, :].contiguous()
|
513 |
+
|
514 |
+
if past_key.shape[-2] != self.config.sliding_window - 1:
|
515 |
+
raise ValueError(
|
516 |
+
f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got"
|
517 |
+
f" {past_key.shape}"
|
518 |
+
)
|
519 |
+
|
520 |
+
if attention_mask is not None:
|
521 |
+
attention_mask = attention_mask[:, slicing_tokens:]
|
522 |
+
attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1)
|
523 |
+
|
524 |
+
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
525 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
526 |
+
|
527 |
+
# repeat k/v heads if n_kv_heads < n_heads
|
528 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
529 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
530 |
+
|
531 |
+
attn_dropout = self.attention_dropout if self.training else 0.0
|
532 |
+
|
533 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
534 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
535 |
+
# cast them back in the correct dtype just to be sure everything works as expected.
|
536 |
+
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
537 |
+
# in fp32.
|
538 |
+
|
539 |
+
if query_states.dtype == torch.float32:
|
540 |
+
if torch.is_autocast_enabled():
|
541 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
542 |
+
# Handle the case where the model is quantized
|
543 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
544 |
+
target_dtype = self.config._pre_quantization_dtype
|
545 |
+
else:
|
546 |
+
target_dtype = self.qkv_proj.weight.dtype
|
547 |
+
|
548 |
+
logger.warning_once(
|
549 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
550 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
551 |
+
f" {target_dtype}."
|
552 |
+
)
|
553 |
+
|
554 |
+
query_states = query_states.to(target_dtype)
|
555 |
+
key_states = key_states.to(target_dtype)
|
556 |
+
value_states = value_states.to(target_dtype)
|
557 |
+
|
558 |
+
# Reashape to the expected shape for Flash Attention
|
559 |
+
query_states = query_states.transpose(1, 2)
|
560 |
+
key_states = key_states.transpose(1, 2)
|
561 |
+
value_states = value_states.transpose(1, 2)
|
562 |
+
|
563 |
+
attn_output = self._flash_attention_forward(
|
564 |
+
query_states,
|
565 |
+
key_states,
|
566 |
+
value_states,
|
567 |
+
attention_mask,
|
568 |
+
q_len,
|
569 |
+
dropout=attn_dropout,
|
570 |
+
use_sliding_windows=use_sliding_windows,
|
571 |
+
)
|
572 |
+
|
573 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
574 |
+
attn_output = self.o_proj(attn_output)
|
575 |
+
|
576 |
+
if not output_attentions:
|
577 |
+
attn_weights = None
|
578 |
+
|
579 |
+
return attn_output, attn_weights, past_key_value
|
580 |
+
|
581 |
+
# Copied from transformers.models.mistral.modeling_mistral.MistralFlashAttention2._flash_attention_forward
|
582 |
+
def _flash_attention_forward(
|
583 |
+
self,
|
584 |
+
query_states,
|
585 |
+
key_states,
|
586 |
+
value_states,
|
587 |
+
attention_mask,
|
588 |
+
query_length,
|
589 |
+
dropout=0.0,
|
590 |
+
softmax_scale=None,
|
591 |
+
use_sliding_windows=False,
|
592 |
+
):
|
593 |
+
"""
|
594 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
595 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
596 |
+
|
597 |
+
Args:
|
598 |
+
query_states (`torch.Tensor`):
|
599 |
+
Input query states to be passed to Flash Attention API
|
600 |
+
key_states (`torch.Tensor`):
|
601 |
+
Input key states to be passed to Flash Attention API
|
602 |
+
value_states (`torch.Tensor`):
|
603 |
+
Input value states to be passed to Flash Attention API
|
604 |
+
attention_mask (`torch.Tensor`):
|
605 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
606 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
607 |
+
dropout (`float`):
|
608 |
+
Attention dropout
|
609 |
+
softmax_scale (`float`, *optional*):
|
610 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
611 |
+
use_sliding_windows (`bool`, *optional*):
|
612 |
+
Whether to activate sliding window attention.
|
613 |
+
"""
|
614 |
+
if not self._flash_attn_uses_top_left_mask:
|
615 |
+
causal = self.is_causal
|
616 |
+
else:
|
617 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
|
618 |
+
causal = self.is_causal and query_length != 1
|
619 |
+
|
620 |
+
# Contains at least one padding token in the sequence
|
621 |
+
if attention_mask is not None:
|
622 |
+
batch_size = query_states.shape[0]
|
623 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
624 |
+
query_states, key_states, value_states, attention_mask, query_length
|
625 |
+
)
|
626 |
+
|
627 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
628 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
629 |
+
|
630 |
+
if not use_sliding_windows:
|
631 |
+
attn_output_unpad = flash_attn_varlen_func(
|
632 |
+
query_states,
|
633 |
+
key_states,
|
634 |
+
value_states,
|
635 |
+
cu_seqlens_q=cu_seqlens_q,
|
636 |
+
cu_seqlens_k=cu_seqlens_k,
|
637 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
638 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
639 |
+
dropout_p=dropout,
|
640 |
+
softmax_scale=softmax_scale,
|
641 |
+
causal=causal,
|
642 |
+
)
|
643 |
+
else:
|
644 |
+
attn_output_unpad = flash_attn_varlen_func(
|
645 |
+
query_states,
|
646 |
+
key_states,
|
647 |
+
value_states,
|
648 |
+
cu_seqlens_q=cu_seqlens_q,
|
649 |
+
cu_seqlens_k=cu_seqlens_k,
|
650 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
651 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
652 |
+
dropout_p=dropout,
|
653 |
+
softmax_scale=softmax_scale,
|
654 |
+
causal=causal,
|
655 |
+
window_size=(self.config.sliding_window, self.config.sliding_window),
|
656 |
+
)
|
657 |
+
|
658 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
659 |
+
else:
|
660 |
+
if not use_sliding_windows:
|
661 |
+
attn_output = flash_attn_func(
|
662 |
+
query_states,
|
663 |
+
key_states,
|
664 |
+
value_states,
|
665 |
+
dropout,
|
666 |
+
softmax_scale=softmax_scale,
|
667 |
+
causal=causal,
|
668 |
+
)
|
669 |
+
else:
|
670 |
+
attn_output = flash_attn_func(
|
671 |
+
query_states,
|
672 |
+
key_states,
|
673 |
+
value_states,
|
674 |
+
dropout,
|
675 |
+
softmax_scale=softmax_scale,
|
676 |
+
causal=causal,
|
677 |
+
window_size=(self.config.sliding_window, self.config.sliding_window),
|
678 |
+
)
|
679 |
+
|
680 |
+
return attn_output
|
681 |
+
|
682 |
+
# Copied from transformers.models.mistral.modeling_mistral.MistralFlashAttention2._upad_input
|
683 |
+
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
684 |
+
batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape
|
685 |
+
|
686 |
+
# On the first iteration we need to properly re-create the padding mask
|
687 |
+
# by slicing it on the proper place
|
688 |
+
if kv_seq_len != attention_mask.shape[-1]:
|
689 |
+
attention_mask_num_tokens = attention_mask.shape[-1]
|
690 |
+
attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :]
|
691 |
+
|
692 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
693 |
+
|
694 |
+
key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
|
695 |
+
value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
|
696 |
+
|
697 |
+
if query_length == kv_seq_len:
|
698 |
+
query_layer = index_first_axis(
|
699 |
+
query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k
|
700 |
+
)
|
701 |
+
cu_seqlens_q = cu_seqlens_k
|
702 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
703 |
+
indices_q = indices_k
|
704 |
+
elif query_length == 1:
|
705 |
+
max_seqlen_in_batch_q = 1
|
706 |
+
cu_seqlens_q = torch.arange(
|
707 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
708 |
+
) # There is a memcpy here, that is very bad.
|
709 |
+
indices_q = cu_seqlens_q[:-1]
|
710 |
+
query_layer = query_layer.squeeze(1)
|
711 |
+
else:
|
712 |
+
# The -q_len: slice assumes left padding.
|
713 |
+
attention_mask = attention_mask[:, -query_length:]
|
714 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
715 |
+
|
716 |
+
return (
|
717 |
+
query_layer,
|
718 |
+
key_layer,
|
719 |
+
value_layer,
|
720 |
+
indices_q,
|
721 |
+
(cu_seqlens_q, cu_seqlens_k),
|
722 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
723 |
+
)
|
724 |
+
|
725 |
+
|
726 |
+
# copied from transformers.models.llama.modeling_llama.LlamaSdpaAttention with Llama->Phi3
|
727 |
+
# TODO @Arthur no longer copied from LLama after static cache
|
728 |
+
class Phi3SdpaAttention(Phi3Attention):
|
729 |
+
"""
|
730 |
+
Phi3 attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
731 |
+
`Phi3Attention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
|
732 |
+
SDPA API.
|
733 |
+
"""
|
734 |
+
|
735 |
+
# Adapted from Phi3Attention.forward
|
736 |
+
def forward(
|
737 |
+
self,
|
738 |
+
hidden_states: torch.Tensor,
|
739 |
+
attention_mask: Optional[torch.Tensor] = None,
|
740 |
+
position_ids: Optional[torch.LongTensor] = None,
|
741 |
+
past_key_value: Optional[Cache] = None,
|
742 |
+
output_attentions: bool = False,
|
743 |
+
use_cache: bool = False,
|
744 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
745 |
+
if output_attentions:
|
746 |
+
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
747 |
+
logger.warning_once(
|
748 |
+
"Phi3Model is using Phi3SdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
|
749 |
+
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
750 |
+
)
|
751 |
+
return super().forward(
|
752 |
+
hidden_states=hidden_states,
|
753 |
+
attention_mask=attention_mask,
|
754 |
+
position_ids=position_ids,
|
755 |
+
past_key_value=past_key_value,
|
756 |
+
output_attentions=output_attentions,
|
757 |
+
use_cache=use_cache,
|
758 |
+
)
|
759 |
+
|
760 |
+
bsz, q_len, _ = hidden_states.size()
|
761 |
+
|
762 |
+
qkv = self.qkv_proj(hidden_states)
|
763 |
+
query_pos = self.num_heads * self.head_dim
|
764 |
+
query_states = qkv[..., :query_pos]
|
765 |
+
key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim]
|
766 |
+
value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :]
|
767 |
+
|
768 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
769 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
770 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
771 |
+
|
772 |
+
kv_seq_len = key_states.shape[-2]
|
773 |
+
if past_key_value is not None:
|
774 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
775 |
+
cos, sin = self.rotary_emb(value_states, position_ids, seq_len=kv_seq_len)
|
776 |
+
|
777 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
778 |
+
|
779 |
+
if past_key_value is not None:
|
780 |
+
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
781 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
782 |
+
|
783 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
784 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
785 |
+
|
786 |
+
if attention_mask is not None:
|
787 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
788 |
+
raise ValueError(
|
789 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
790 |
+
)
|
791 |
+
|
792 |
+
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
|
793 |
+
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
794 |
+
if query_states.device.type == "cuda" and attention_mask is not None:
|
795 |
+
query_states = query_states.contiguous()
|
796 |
+
key_states = key_states.contiguous()
|
797 |
+
value_states = value_states.contiguous()
|
798 |
+
|
799 |
+
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
800 |
+
query_states,
|
801 |
+
key_states,
|
802 |
+
value_states,
|
803 |
+
attn_mask=attention_mask,
|
804 |
+
dropout_p=self.attention_dropout if self.training else 0.0,
|
805 |
+
# The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
|
806 |
+
is_causal=self.is_causal and attention_mask is None and q_len > 1,
|
807 |
+
)
|
808 |
+
|
809 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
810 |
+
attn_output = attn_output.view(bsz, q_len, self.hidden_size)
|
811 |
+
|
812 |
+
attn_output = self.o_proj(attn_output)
|
813 |
+
|
814 |
+
return attn_output, None, past_key_value
|
815 |
+
|
816 |
+
|
817 |
+
PHI3_ATTENTION_CLASSES = {
|
818 |
+
"eager": Phi3Attention,
|
819 |
+
"flash_attention_2": Phi3FlashAttention2,
|
820 |
+
"sdpa": Phi3SdpaAttention,
|
821 |
+
}
|
822 |
+
|
823 |
+
|
824 |
+
class Phi3DecoderLayer(nn.Module):
|
825 |
+
def __init__(self, config: Phi3VConfig, layer_idx: int):
|
826 |
+
super().__init__()
|
827 |
+
|
828 |
+
self.config = config
|
829 |
+
self.self_attn = PHI3_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx=layer_idx)
|
830 |
+
|
831 |
+
self.mlp = Phi3MLP(config)
|
832 |
+
self.input_layernorm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
833 |
+
|
834 |
+
self.resid_attn_dropout = nn.Dropout(config.resid_pdrop)
|
835 |
+
self.resid_mlp_dropout = nn.Dropout(config.resid_pdrop)
|
836 |
+
self.post_attention_layernorm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
837 |
+
|
838 |
+
def forward(
|
839 |
+
self,
|
840 |
+
hidden_states: torch.Tensor,
|
841 |
+
attention_mask: Optional[torch.Tensor] = None,
|
842 |
+
position_ids: Optional[torch.LongTensor] = None,
|
843 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
844 |
+
output_attentions: Optional[bool] = False,
|
845 |
+
use_cache: Optional[bool] = False,
|
846 |
+
**kwargs,
|
847 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
848 |
+
if "padding_mask" in kwargs:
|
849 |
+
warnings.warn(
|
850 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
851 |
+
)
|
852 |
+
"""
|
853 |
+
Args:
|
854 |
+
hidden_states (`torch.FloatTensor`):
|
855 |
+
input to the layer of shape `(batch, seq_len, embed_dim)`
|
856 |
+
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
857 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
858 |
+
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
859 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range
|
860 |
+
`[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)
|
861 |
+
output_attentions (`bool`, *optional*):
|
862 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
863 |
+
returned tensors for more detail.
|
864 |
+
use_cache (`bool`, *optional*):
|
865 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
866 |
+
(see `past_key_values`).
|
867 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
868 |
+
"""
|
869 |
+
|
870 |
+
residual = hidden_states
|
871 |
+
|
872 |
+
hidden_states = self.input_layernorm(hidden_states)
|
873 |
+
|
874 |
+
# Self Attention
|
875 |
+
attn_outputs, self_attn_weights, present_key_value = self.self_attn(
|
876 |
+
hidden_states=hidden_states,
|
877 |
+
attention_mask=attention_mask,
|
878 |
+
position_ids=position_ids,
|
879 |
+
past_key_value=past_key_value,
|
880 |
+
output_attentions=output_attentions,
|
881 |
+
use_cache=use_cache,
|
882 |
+
)
|
883 |
+
|
884 |
+
hidden_states = residual + self.resid_attn_dropout(attn_outputs)
|
885 |
+
|
886 |
+
residual = hidden_states
|
887 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
888 |
+
hidden_states = self.mlp(hidden_states)
|
889 |
+
hidden_states = residual + self.resid_mlp_dropout(hidden_states)
|
890 |
+
|
891 |
+
outputs = (hidden_states,)
|
892 |
+
|
893 |
+
if output_attentions:
|
894 |
+
outputs += (self_attn_weights,)
|
895 |
+
|
896 |
+
if use_cache:
|
897 |
+
outputs += (present_key_value,)
|
898 |
+
|
899 |
+
return outputs
|
900 |
+
|
901 |
+
|
902 |
+
PHI3V_START_DOCSTRING = r"""
|
903 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
904 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
905 |
+
etc.)
|
906 |
+
|
907 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
908 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
909 |
+
and behavior.
|
910 |
+
|
911 |
+
Parameters:
|
912 |
+
config ([`Phi3VConfig`]):
|
913 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
914 |
+
load the weights associated with the model, only the configuration. Check out the
|
915 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
916 |
+
"""
|
917 |
+
|
918 |
+
|
919 |
+
@add_start_docstrings(
|
920 |
+
"The bare Phi-3-V model outputting raw hidden-states without any specific head on top.",
|
921 |
+
PHI3V_START_DOCSTRING,
|
922 |
+
)
|
923 |
+
class Phi3VPreTrainedModel(PreTrainedModel):
|
924 |
+
config_class = Phi3VConfig
|
925 |
+
base_model_prefix = "model"
|
926 |
+
supports_gradient_checkpointing = True
|
927 |
+
_no_split_modules = ["Phi3DecoderLayer"]
|
928 |
+
_skip_keys_device_placement = "past_key_values"
|
929 |
+
_supports_flash_attn_2 = True
|
930 |
+
_supports_sdpa = False
|
931 |
+
_supports_cache_class = True
|
932 |
+
|
933 |
+
_version = "0.0.5"
|
934 |
+
|
935 |
+
def _init_weights(self, module):
|
936 |
+
std = self.config.initializer_range
|
937 |
+
if isinstance(module, nn.Linear):
|
938 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
939 |
+
if module.bias is not None:
|
940 |
+
module.bias.data.zero_()
|
941 |
+
elif isinstance(module, nn.Embedding):
|
942 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
943 |
+
if module.padding_idx is not None:
|
944 |
+
module.weight.data[module.padding_idx].zero_()
|
945 |
+
|
946 |
+
|
947 |
+
PHI3V_INPUTS_DOCSTRING = r"""
|
948 |
+
Args:
|
949 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
950 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
951 |
+
it.
|
952 |
+
|
953 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
954 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
955 |
+
|
956 |
+
[What are input IDs?](../glossary#input-ids)
|
957 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
958 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
959 |
+
|
960 |
+
- 1 for tokens that are **not masked**,
|
961 |
+
- 0 for tokens that are **masked**.
|
962 |
+
|
963 |
+
[What are attention masks?](../glossary#attention-mask)
|
964 |
+
|
965 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
966 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
967 |
+
|
968 |
+
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
969 |
+
`past_key_values`).
|
970 |
+
|
971 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
972 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
973 |
+
information on the default strategy.
|
974 |
+
|
975 |
+
- 1 indicates the head is **not masked**,
|
976 |
+
- 0 indicates the head is **masked**.
|
977 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
978 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
979 |
+
config.n_positions - 1]`.
|
980 |
+
|
981 |
+
[What are position IDs?](../glossary#position-ids)
|
982 |
+
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
983 |
+
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
984 |
+
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
985 |
+
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
986 |
+
|
987 |
+
Two formats are allowed:
|
988 |
+
- a [`~cache_utils.Cache`] instance;
|
989 |
+
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
990 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
991 |
+
cache format.
|
992 |
+
|
993 |
+
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
994 |
+
legacy cache format will be returned.
|
995 |
+
|
996 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
997 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
998 |
+
of shape `(batch_size, sequence_length)`.
|
999 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
1000 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
1001 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
1002 |
+
model's internal embedding lookup matrix.
|
1003 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)):
|
1004 |
+
The tensors corresponding to the input images. Pixel values can be obtained using [`AutoImageProcessor`].
|
1005 |
+
See [`Phi3ImageProcessor.__call__`] for details.
|
1006 |
+
image_sizes (`torch.LongTensor` of shape `(batch_size, 2)`, *optional*):
|
1007 |
+
The sizes of the images in the batch, being (height, width) for each image.
|
1008 |
+
use_cache (`bool`, *optional*):
|
1009 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
1010 |
+
`past_key_values`).
|
1011 |
+
output_attentions (`bool`, *optional*):
|
1012 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
1013 |
+
tensors for more detail.
|
1014 |
+
output_hidden_states (`bool`, *optional*):
|
1015 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
1016 |
+
more detail.
|
1017 |
+
return_dict (`bool`, *optional*):
|
1018 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
1019 |
+
"""
|
1020 |
+
|
1021 |
+
|
1022 |
+
@add_start_docstrings(
|
1023 |
+
"The bare Phi-3-V model outputting raw hidden-states without any specific head on top.",
|
1024 |
+
PHI3V_START_DOCSTRING,
|
1025 |
+
)
|
1026 |
+
class Phi3VModel(Phi3VPreTrainedModel):
|
1027 |
+
"""
|
1028 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Phi3DecoderLayer`]
|
1029 |
+
|
1030 |
+
Args:
|
1031 |
+
config: Phi3Config
|
1032 |
+
"""
|
1033 |
+
|
1034 |
+
def __init__(self, config: Phi3VConfig):
|
1035 |
+
super().__init__(config)
|
1036 |
+
self.padding_idx = config.pad_token_id
|
1037 |
+
self.vocab_size = config.vocab_size
|
1038 |
+
|
1039 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
1040 |
+
self.embed_dropout = nn.Dropout(config.embd_pdrop)
|
1041 |
+
|
1042 |
+
self.vision_embed_tokens = None
|
1043 |
+
if isinstance(config.embd_layer, dict):
|
1044 |
+
# vision embedding layer
|
1045 |
+
embedding_config = {
|
1046 |
+
'embedding_cls': config.embd_layer['embedding_cls'],
|
1047 |
+
**config.embd_layer
|
1048 |
+
}
|
1049 |
+
self.vision_embed_tokens = Phi3ImageEmbedding(config, wte=self.embed_tokens, **embedding_config)
|
1050 |
+
# # set wte the same for vision embedding
|
1051 |
+
# self.vision_embed_tokens.wte.weight = self.embed_tokens.weight
|
1052 |
+
|
1053 |
+
self.layers = nn.ModuleList(
|
1054 |
+
[Phi3DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
1055 |
+
)
|
1056 |
+
self._attn_implementation = config._attn_implementation
|
1057 |
+
self.norm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
1058 |
+
|
1059 |
+
self.gradient_checkpointing = False
|
1060 |
+
# Initialize weights and apply final processing
|
1061 |
+
self.post_init()
|
1062 |
+
|
1063 |
+
def get_input_embeddings(self):
|
1064 |
+
return self.embed_tokens
|
1065 |
+
|
1066 |
+
def set_input_embeddings(self, value):
|
1067 |
+
self.embed_tokens = value
|
1068 |
+
|
1069 |
+
@add_start_docstrings_to_model_forward(PHI3V_INPUTS_DOCSTRING)
|
1070 |
+
def forward(
|
1071 |
+
self,
|
1072 |
+
input_ids: torch.LongTensor = None,
|
1073 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1074 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1075 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1076 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1077 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
1078 |
+
image_sizes: Optional[torch.LongTensor] = None,
|
1079 |
+
use_cache: Optional[bool] = None,
|
1080 |
+
output_attentions: Optional[bool] = None,
|
1081 |
+
output_hidden_states: Optional[bool] = None,
|
1082 |
+
return_dict: Optional[bool] = None,
|
1083 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
1084 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1085 |
+
output_hidden_states = (
|
1086 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1087 |
+
)
|
1088 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1089 |
+
|
1090 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1091 |
+
|
1092 |
+
# retrieve input_ids and inputs_embeds
|
1093 |
+
if input_ids is not None and inputs_embeds is not None:
|
1094 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
1095 |
+
elif input_ids is not None:
|
1096 |
+
batch_size, seq_length = input_ids.shape[:2]
|
1097 |
+
elif inputs_embeds is not None:
|
1098 |
+
batch_size, seq_length = inputs_embeds.shape[:2]
|
1099 |
+
else:
|
1100 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
1101 |
+
|
1102 |
+
past_key_values_length = 0
|
1103 |
+
|
1104 |
+
if self.gradient_checkpointing and self.training:
|
1105 |
+
if use_cache:
|
1106 |
+
logger.warning_once(
|
1107 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
1108 |
+
)
|
1109 |
+
use_cache = False
|
1110 |
+
|
1111 |
+
if use_cache:
|
1112 |
+
use_legacy_cache = not isinstance(past_key_values, Cache)
|
1113 |
+
if use_legacy_cache:
|
1114 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
1115 |
+
past_key_values_length = past_key_values.get_usable_length(seq_length)
|
1116 |
+
|
1117 |
+
if position_ids is None:
|
1118 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
1119 |
+
position_ids = torch.arange(
|
1120 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
1121 |
+
)
|
1122 |
+
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
1123 |
+
else:
|
1124 |
+
position_ids = position_ids.view(-1, seq_length).long()
|
1125 |
+
|
1126 |
+
if inputs_embeds is None:
|
1127 |
+
if pixel_values is not None and image_sizes is not None:
|
1128 |
+
assert self.vision_embed_tokens is not None, "Vision embedding layer is not defined"
|
1129 |
+
inputs_embeds = self.vision_embed_tokens(input_ids, pixel_values=pixel_values, image_sizes=image_sizes)
|
1130 |
+
else:
|
1131 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
1132 |
+
|
1133 |
+
if attention_mask is not None and self._attn_implementation == "flash_attention_2" and use_cache:
|
1134 |
+
is_padding_right = attention_mask[:, -1].sum().item() != batch_size
|
1135 |
+
if is_padding_right:
|
1136 |
+
raise ValueError(
|
1137 |
+
"You are attempting to perform batched generation with padding_side='right'"
|
1138 |
+
" this may lead to unexpected behaviour for Flash Attention version of Phi3. Make sure to "
|
1139 |
+
" call `tokenizer.padding_side = 'left'` before tokenizing the input. "
|
1140 |
+
)
|
1141 |
+
|
1142 |
+
if self._attn_implementation == "flash_attention_2":
|
1143 |
+
# 2d mask is passed through the layers
|
1144 |
+
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
1145 |
+
else:
|
1146 |
+
# 4d mask is passed through the layers
|
1147 |
+
attention_mask = _prepare_4d_causal_attention_mask(
|
1148 |
+
attention_mask,
|
1149 |
+
(batch_size, seq_length),
|
1150 |
+
inputs_embeds,
|
1151 |
+
past_key_values_length,
|
1152 |
+
sliding_window=self.config.sliding_window,
|
1153 |
+
)
|
1154 |
+
|
1155 |
+
hidden_states = inputs_embeds
|
1156 |
+
|
1157 |
+
# decoder layers
|
1158 |
+
all_hidden_states = () if output_hidden_states else None
|
1159 |
+
all_self_attns = () if output_attentions else None
|
1160 |
+
next_decoder_cache = None
|
1161 |
+
|
1162 |
+
for decoder_layer in self.layers:
|
1163 |
+
if output_hidden_states:
|
1164 |
+
all_hidden_states += (hidden_states,)
|
1165 |
+
|
1166 |
+
if self.gradient_checkpointing and self.training:
|
1167 |
+
layer_outputs = self._gradient_checkpointing_func(
|
1168 |
+
decoder_layer.__call__,
|
1169 |
+
hidden_states,
|
1170 |
+
attention_mask,
|
1171 |
+
position_ids,
|
1172 |
+
past_key_values,
|
1173 |
+
output_attentions,
|
1174 |
+
use_cache,
|
1175 |
+
)
|
1176 |
+
else:
|
1177 |
+
layer_outputs = decoder_layer(
|
1178 |
+
hidden_states,
|
1179 |
+
attention_mask=attention_mask,
|
1180 |
+
position_ids=position_ids,
|
1181 |
+
past_key_value=past_key_values,
|
1182 |
+
output_attentions=output_attentions,
|
1183 |
+
use_cache=use_cache,
|
1184 |
+
)
|
1185 |
+
|
1186 |
+
hidden_states = layer_outputs[0]
|
1187 |
+
|
1188 |
+
if use_cache:
|
1189 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
1190 |
+
|
1191 |
+
if output_attentions:
|
1192 |
+
all_self_attns += (layer_outputs[1],)
|
1193 |
+
|
1194 |
+
hidden_states = self.norm(hidden_states)
|
1195 |
+
|
1196 |
+
# add hidden states from the last decoder layer
|
1197 |
+
if output_hidden_states:
|
1198 |
+
all_hidden_states += (hidden_states,)
|
1199 |
+
|
1200 |
+
next_cache = None
|
1201 |
+
if use_cache:
|
1202 |
+
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
|
1203 |
+
if not return_dict:
|
1204 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
1205 |
+
return BaseModelOutputWithPast(
|
1206 |
+
last_hidden_state=hidden_states,
|
1207 |
+
past_key_values=next_cache,
|
1208 |
+
hidden_states=all_hidden_states,
|
1209 |
+
attentions=all_self_attns,
|
1210 |
+
)
|
1211 |
+
|
1212 |
+
|
1213 |
+
class Phi3VForCausalLM(Phi3VPreTrainedModel):
|
1214 |
+
_tied_weights_keys = ["lm_head.weight"]
|
1215 |
+
|
1216 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.__init__ with Llama->Phi3
|
1217 |
+
def __init__(self, config):
|
1218 |
+
super().__init__(config)
|
1219 |
+
self.model = Phi3VModel(config)
|
1220 |
+
self.vocab_size = config.vocab_size
|
1221 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1222 |
+
|
1223 |
+
# Initialize weights and apply final processing
|
1224 |
+
self.post_init()
|
1225 |
+
|
1226 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_input_embeddings
|
1227 |
+
def get_input_embeddings(self):
|
1228 |
+
return self.model.embed_tokens
|
1229 |
+
|
1230 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_input_embeddings
|
1231 |
+
def set_input_embeddings(self, value):
|
1232 |
+
self.model.embed_tokens = value
|
1233 |
+
|
1234 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_output_embeddings
|
1235 |
+
def get_output_embeddings(self):
|
1236 |
+
return self.lm_head
|
1237 |
+
|
1238 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_output_embeddings
|
1239 |
+
def set_output_embeddings(self, new_embeddings):
|
1240 |
+
self.lm_head = new_embeddings
|
1241 |
+
|
1242 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_decoder
|
1243 |
+
def set_decoder(self, decoder):
|
1244 |
+
self.model = decoder
|
1245 |
+
|
1246 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_decoder
|
1247 |
+
def get_decoder(self):
|
1248 |
+
return self.model
|
1249 |
+
|
1250 |
+
# Ignore copy
|
1251 |
+
@add_start_docstrings_to_model_forward(PHI3V_INPUTS_DOCSTRING)
|
1252 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
1253 |
+
def forward(
|
1254 |
+
self,
|
1255 |
+
input_ids: torch.LongTensor = None,
|
1256 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1257 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1258 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1259 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1260 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
1261 |
+
image_sizes: Optional[torch.LongTensor] = None,
|
1262 |
+
labels: Optional[torch.LongTensor] = None,
|
1263 |
+
use_cache: Optional[bool] = None,
|
1264 |
+
output_attentions: Optional[bool] = None,
|
1265 |
+
output_hidden_states: Optional[bool] = None,
|
1266 |
+
return_dict: Optional[bool] = None,
|
1267 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
1268 |
+
r"""
|
1269 |
+
Args:
|
1270 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1271 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
1272 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1273 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1274 |
+
|
1275 |
+
Returns:
|
1276 |
+
|
1277 |
+
Example:
|
1278 |
+
|
1279 |
+
```python
|
1280 |
+
>>> from transformers import AutoTokenizer, Phi3ForCausalLM
|
1281 |
+
|
1282 |
+
>>> model = Phi3ForCausalLM.from_pretrained("microsoft/phi-3-mini-4k-instruct")
|
1283 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-3-mini-4k-instruct")
|
1284 |
+
|
1285 |
+
>>> prompt = "This is an example script ."
|
1286 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
1287 |
+
|
1288 |
+
>>> # Generate
|
1289 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
1290 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
1291 |
+
'This is an example script .\n Certainly! Below is a sample script that demonstrates a simple task, such as calculating the sum'
|
1292 |
+
```"""
|
1293 |
+
|
1294 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1295 |
+
output_hidden_states = (
|
1296 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1297 |
+
)
|
1298 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1299 |
+
|
1300 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
1301 |
+
outputs = self.model(
|
1302 |
+
input_ids=input_ids,
|
1303 |
+
attention_mask=attention_mask,
|
1304 |
+
position_ids=position_ids,
|
1305 |
+
past_key_values=past_key_values,
|
1306 |
+
inputs_embeds=inputs_embeds,
|
1307 |
+
pixel_values=pixel_values,
|
1308 |
+
image_sizes=image_sizes,
|
1309 |
+
use_cache=use_cache,
|
1310 |
+
output_attentions=output_attentions,
|
1311 |
+
output_hidden_states=output_hidden_states,
|
1312 |
+
return_dict=return_dict,
|
1313 |
+
)
|
1314 |
+
|
1315 |
+
hidden_states = outputs[0]
|
1316 |
+
logits = self.lm_head(hidden_states)
|
1317 |
+
logits = logits.float()
|
1318 |
+
|
1319 |
+
loss = None
|
1320 |
+
if labels is not None:
|
1321 |
+
# Shift so that tokens < n predict n
|
1322 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
1323 |
+
shift_labels = labels[..., 1:].contiguous()
|
1324 |
+
# Flatten the tokens
|
1325 |
+
loss_fct = CrossEntropyLoss()
|
1326 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
1327 |
+
shift_labels = shift_labels.view(-1)
|
1328 |
+
# Enable model parallelism
|
1329 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
1330 |
+
loss = loss_fct(shift_logits, shift_labels)
|
1331 |
+
|
1332 |
+
if not return_dict:
|
1333 |
+
output = (logits,) + outputs[1:]
|
1334 |
+
return (loss,) + output if loss is not None else output
|
1335 |
+
|
1336 |
+
return CausalLMOutputWithPast(
|
1337 |
+
loss=loss,
|
1338 |
+
logits=logits,
|
1339 |
+
past_key_values=outputs.past_key_values,
|
1340 |
+
hidden_states=outputs.hidden_states,
|
1341 |
+
attentions=outputs.attentions,
|
1342 |
+
)
|
1343 |
+
|
1344 |
+
# Copied from transformers.models.persimmon.modeling_persimmon.PersimmonForCausalLM.prepare_inputs_for_generation
|
1345 |
+
def prepare_inputs_for_generation(
|
1346 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, pixel_values=None, image_sizes=None, **kwargs
|
1347 |
+
):
|
1348 |
+
if past_key_values is not None:
|
1349 |
+
if isinstance(past_key_values, Cache):
|
1350 |
+
cache_length = past_key_values.get_seq_length()
|
1351 |
+
past_length = past_key_values.seen_tokens
|
1352 |
+
max_cache_length = past_key_values.get_max_length()
|
1353 |
+
else:
|
1354 |
+
cache_length = past_length = past_key_values[0][0].shape[2]
|
1355 |
+
max_cache_length = None
|
1356 |
+
|
1357 |
+
# Keep only the unprocessed tokens:
|
1358 |
+
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
1359 |
+
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
|
1360 |
+
# input)
|
1361 |
+
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
1362 |
+
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
1363 |
+
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
1364 |
+
# input_ids based on the past_length.
|
1365 |
+
elif past_length < input_ids.shape[1]:
|
1366 |
+
input_ids = input_ids[:, past_length:]
|
1367 |
+
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
1368 |
+
|
1369 |
+
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
1370 |
+
if (
|
1371 |
+
max_cache_length is not None
|
1372 |
+
and attention_mask is not None
|
1373 |
+
and cache_length + input_ids.shape[1] > max_cache_length
|
1374 |
+
):
|
1375 |
+
attention_mask = attention_mask[:, -max_cache_length:]
|
1376 |
+
|
1377 |
+
position_ids = kwargs.get("position_ids", None)
|
1378 |
+
if attention_mask is not None and position_ids is None:
|
1379 |
+
# create position_ids on the fly for batch generation
|
1380 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1381 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
1382 |
+
if past_key_values:
|
1383 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
1384 |
+
|
1385 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1386 |
+
if inputs_embeds is not None and past_key_values is None:
|
1387 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
1388 |
+
else:
|
1389 |
+
model_inputs = {"input_ids": input_ids}
|
1390 |
+
|
1391 |
+
model_inputs.update(
|
1392 |
+
{
|
1393 |
+
"position_ids": position_ids,
|
1394 |
+
"past_key_values": past_key_values,
|
1395 |
+
"use_cache": kwargs.get("use_cache"),
|
1396 |
+
"attention_mask": attention_mask,
|
1397 |
+
"pixel_values": pixel_values,
|
1398 |
+
"image_sizes": image_sizes,
|
1399 |
+
}
|
1400 |
+
)
|
1401 |
+
return model_inputs
|
1402 |
+
|
1403 |
+
@staticmethod
|
1404 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM._reorder_cache
|
1405 |
+
def _reorder_cache(past_key_values, beam_idx):
|
1406 |
+
reordered_past = ()
|
1407 |
+
for layer_past in past_key_values:
|
1408 |
+
reordered_past += (
|
1409 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
1410 |
+
)
|
1411 |
+
return reordered_past
|
1412 |
+
|
1413 |
+
|
1414 |
+
@add_start_docstrings(
|
1415 |
+
"""
|
1416 |
+
The [`Phi3VModel`] with a sequence classification head on top (linear layer).
|
1417 |
+
|
1418 |
+
[`Phi3VForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
1419 |
+
(e.g. GPT-2) do.
|
1420 |
+
|
1421 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
1422 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
1423 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
1424 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
1425 |
+
each row of the batch).
|
1426 |
+
""",
|
1427 |
+
PHI3V_START_DOCSTRING,
|
1428 |
+
)
|
1429 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with Llama->Phi3, LLAMA->PHI3, self.transformer->self.model, transformer_outputs->model_outputs
|
1430 |
+
class Phi3VForSequenceClassification(Phi3VPreTrainedModel):
|
1431 |
+
def __init__(self, config):
|
1432 |
+
super().__init__(config)
|
1433 |
+
self.num_labels = config.num_labels
|
1434 |
+
self.model = Phi3VModel(config)
|
1435 |
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
1436 |
+
|
1437 |
+
# Initialize weights and apply final processing
|
1438 |
+
self.post_init()
|
1439 |
+
|
1440 |
+
def get_input_embeddings(self):
|
1441 |
+
return self.model.embed_tokens
|
1442 |
+
|
1443 |
+
def set_input_embeddings(self, value):
|
1444 |
+
self.model.embed_tokens = value
|
1445 |
+
|
1446 |
+
@add_start_docstrings_to_model_forward(PHI3V_INPUTS_DOCSTRING)
|
1447 |
+
def forward(
|
1448 |
+
self,
|
1449 |
+
input_ids: torch.LongTensor = None,
|
1450 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1451 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1452 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
1453 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1454 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
1455 |
+
image_sizes: Optional[torch.LongTensor] = None,
|
1456 |
+
labels: Optional[torch.LongTensor] = None,
|
1457 |
+
use_cache: Optional[bool] = None,
|
1458 |
+
output_attentions: Optional[bool] = None,
|
1459 |
+
output_hidden_states: Optional[bool] = None,
|
1460 |
+
return_dict: Optional[bool] = None,
|
1461 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
1462 |
+
r"""
|
1463 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1464 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1465 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1466 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1467 |
+
"""
|
1468 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1469 |
+
|
1470 |
+
model_outputs = self.model(
|
1471 |
+
input_ids,
|
1472 |
+
attention_mask=attention_mask,
|
1473 |
+
position_ids=position_ids,
|
1474 |
+
past_key_values=past_key_values,
|
1475 |
+
inputs_embeds=inputs_embeds,
|
1476 |
+
pixel_values=pixel_values,
|
1477 |
+
image_sizes=image_sizes,
|
1478 |
+
use_cache=use_cache,
|
1479 |
+
output_attentions=output_attentions,
|
1480 |
+
output_hidden_states=output_hidden_states,
|
1481 |
+
return_dict=return_dict,
|
1482 |
+
)
|
1483 |
+
hidden_states = model_outputs[0]
|
1484 |
+
logits = self.score(hidden_states)
|
1485 |
+
|
1486 |
+
if input_ids is not None:
|
1487 |
+
batch_size = input_ids.shape[0]
|
1488 |
+
else:
|
1489 |
+
batch_size = inputs_embeds.shape[0]
|
1490 |
+
|
1491 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
1492 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
1493 |
+
if self.config.pad_token_id is None:
|
1494 |
+
sequence_lengths = -1
|
1495 |
+
else:
|
1496 |
+
if input_ids is not None:
|
1497 |
+
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
1498 |
+
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
1499 |
+
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
1500 |
+
sequence_lengths = sequence_lengths.to(logits.device)
|
1501 |
+
else:
|
1502 |
+
sequence_lengths = -1
|
1503 |
+
|
1504 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
1505 |
+
|
1506 |
+
loss = None
|
1507 |
+
if labels is not None:
|
1508 |
+
labels = labels.to(logits.device)
|
1509 |
+
if self.config.problem_type is None:
|
1510 |
+
if self.num_labels == 1:
|
1511 |
+
self.config.problem_type = "regression"
|
1512 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1513 |
+
self.config.problem_type = "single_label_classification"
|
1514 |
+
else:
|
1515 |
+
self.config.problem_type = "multi_label_classification"
|
1516 |
+
|
1517 |
+
if self.config.problem_type == "regression":
|
1518 |
+
loss_fct = MSELoss()
|
1519 |
+
if self.num_labels == 1:
|
1520 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
1521 |
+
else:
|
1522 |
+
loss = loss_fct(pooled_logits, labels)
|
1523 |
+
elif self.config.problem_type == "single_label_classification":
|
1524 |
+
loss_fct = CrossEntropyLoss()
|
1525 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
1526 |
+
elif self.config.problem_type == "multi_label_classification":
|
1527 |
+
loss_fct = BCEWithLogitsLoss()
|
1528 |
+
loss = loss_fct(pooled_logits, labels)
|
1529 |
+
if not return_dict:
|
1530 |
+
output = (pooled_logits,) + model_outputs[1:]
|
1531 |
+
return ((loss,) + output) if loss is not None else output
|
1532 |
+
|
1533 |
+
return SequenceClassifierOutputWithPast(
|
1534 |
+
loss=loss,
|
1535 |
+
logits=pooled_logits,
|
1536 |
+
past_key_values=model_outputs.past_key_values,
|
1537 |
+
hidden_states=model_outputs.hidden_states,
|
1538 |
+
attentions=model_outputs.attentions,
|
1539 |
+
)
|
1540 |
+
|
1541 |
+
|
1542 |
+
@add_start_docstrings(
|
1543 |
+
"""
|
1544 |
+
[`Phi3VModel`] with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
|
1545 |
+
Named-Entity-Recognition (NER) tasks.
|
1546 |
+
""",
|
1547 |
+
PHI3V_START_DOCSTRING,
|
1548 |
+
)
|
1549 |
+
# Copied from transformers.models.mpt.modeling_mpt.MptForTokenClassification with Mpt->Phi3,MPT->PHI3,self.transformer->self.model,transformer_outputs->model_outputs
|
1550 |
+
class Phi3VForTokenClassification(Phi3VPreTrainedModel):
|
1551 |
+
def __init__(self, config: Phi3VConfig):
|
1552 |
+
super().__init__(config)
|
1553 |
+
self.num_labels = config.num_labels
|
1554 |
+
|
1555 |
+
self.model = Phi3VModel(config)
|
1556 |
+
if hasattr(config, "classifier_dropout") and config.classifier_dropout is not None:
|
1557 |
+
classifier_dropout = config.classifier_dropout
|
1558 |
+
elif hasattr(config, "hidden_dropout") and config.hidden_dropout is not None:
|
1559 |
+
classifier_dropout = config.hidden_dropout
|
1560 |
+
else:
|
1561 |
+
classifier_dropout = 0.1
|
1562 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
1563 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
1564 |
+
|
1565 |
+
# Initialize weights and apply final processing
|
1566 |
+
self.post_init()
|
1567 |
+
|
1568 |
+
@add_start_docstrings_to_model_forward(PHI3V_INPUTS_DOCSTRING)
|
1569 |
+
@add_code_sample_docstrings(
|
1570 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1571 |
+
output_type=TokenClassifierOutput,
|
1572 |
+
config_class=_CONFIG_FOR_DOC,
|
1573 |
+
)
|
1574 |
+
def forward(
|
1575 |
+
self,
|
1576 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1577 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
1578 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1579 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1580 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
1581 |
+
image_sizes: Optional[torch.LongTensor] = None,
|
1582 |
+
labels: Optional[torch.Tensor] = None,
|
1583 |
+
use_cache: Optional[bool] = None,
|
1584 |
+
output_attentions: Optional[bool] = None,
|
1585 |
+
output_hidden_states: Optional[bool] = None,
|
1586 |
+
return_dict: Optional[bool] = None,
|
1587 |
+
**deprecated_arguments,
|
1588 |
+
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
|
1589 |
+
r"""
|
1590 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1591 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1592 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1593 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1594 |
+
"""
|
1595 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1596 |
+
|
1597 |
+
model_outputs = self.model(
|
1598 |
+
input_ids,
|
1599 |
+
past_key_values=past_key_values,
|
1600 |
+
attention_mask=attention_mask,
|
1601 |
+
inputs_embeds=inputs_embeds,
|
1602 |
+
pixel_values=pixel_values,
|
1603 |
+
image_sizes=image_sizes,
|
1604 |
+
use_cache=use_cache,
|
1605 |
+
output_attentions=output_attentions,
|
1606 |
+
output_hidden_states=output_hidden_states,
|
1607 |
+
return_dict=return_dict,
|
1608 |
+
)
|
1609 |
+
|
1610 |
+
hidden_states = model_outputs[0]
|
1611 |
+
hidden_states = self.dropout(hidden_states)
|
1612 |
+
logits = self.classifier(hidden_states)
|
1613 |
+
|
1614 |
+
loss = None
|
1615 |
+
if labels is not None:
|
1616 |
+
# move labels to correct device to enable model parallelism
|
1617 |
+
labels = labels.to(logits.device)
|
1618 |
+
batch_size, seq_length = labels.shape
|
1619 |
+
loss_fct = CrossEntropyLoss()
|
1620 |
+
loss = loss_fct(
|
1621 |
+
logits.view(batch_size * seq_length, self.num_labels), labels.view(batch_size * seq_length)
|
1622 |
+
)
|
1623 |
+
|
1624 |
+
if not return_dict:
|
1625 |
+
output = (logits,) + model_outputs[2:]
|
1626 |
+
return ((loss,) + output) if loss is not None else output
|
1627 |
+
|
1628 |
+
return TokenClassifierOutput(
|
1629 |
+
loss=loss,
|
1630 |
+
logits=logits,
|
1631 |
+
hidden_states=model_outputs.hidden_states,
|
1632 |
+
attentions=model_outputs.attentions,
|
1633 |
+
)
|
sample_inference.py
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
3 |
+
from PIL import Image
|
4 |
+
import requests
|
5 |
+
import torch
|
6 |
+
from transformers import AutoModelForCausalLM
|
7 |
+
from transformers import AutoProcessor
|
8 |
+
model_path = "./"
|
9 |
+
|
10 |
+
kwargs = {}
|
11 |
+
kwargs['torch_dtype'] = torch.bfloat16
|
12 |
+
|
13 |
+
processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True)
|
14 |
+
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, torch_dtype="auto").cuda()
|
15 |
+
|
16 |
+
user_prompt = '<|user|>\n'
|
17 |
+
assistant_prompt = '<|assistant|>\n'
|
18 |
+
prompt_suffix = "<|end|>\n"
|
19 |
+
|
20 |
+
#################################################### text-only ####################################################
|
21 |
+
prompt = f"{user_prompt}what is the answer for 1+1? Explain it.{prompt_suffix}{assistant_prompt}"
|
22 |
+
print(f">>> Prompt\n{prompt}")
|
23 |
+
inputs = processor(prompt, images=None, return_tensors="pt").to("cuda:0")
|
24 |
+
generate_ids = model.generate(**inputs,
|
25 |
+
max_new_tokens=1000,
|
26 |
+
eos_token_id=processor.tokenizer.eos_token_id,
|
27 |
+
)
|
28 |
+
generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
|
29 |
+
response = processor.batch_decode(generate_ids,
|
30 |
+
skip_special_tokens=True,
|
31 |
+
clean_up_tokenization_spaces=False)[0]
|
32 |
+
print(f'>>> Response\n{response}')
|
33 |
+
|
34 |
+
#################################################### text-only 2 ####################################################
|
35 |
+
prompt = f"{user_prompt}Give me the code for sloving two-sum problem.{prompt_suffix}{assistant_prompt}"
|
36 |
+
print(f">>> Prompt\n{prompt}")
|
37 |
+
inputs = processor(prompt, images=None, return_tensors="pt").to("cuda:0")
|
38 |
+
generate_ids = model.generate(**inputs,
|
39 |
+
max_new_tokens=1000,
|
40 |
+
eos_token_id=processor.tokenizer.eos_token_id,
|
41 |
+
)
|
42 |
+
generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
|
43 |
+
response = processor.batch_decode(generate_ids,
|
44 |
+
skip_special_tokens=True,
|
45 |
+
clean_up_tokenization_spaces=False)[0]
|
46 |
+
print(f'>>> Response\n{response}')
|
47 |
+
|
48 |
+
|
49 |
+
#################################################### EXAMPLE 1 ####################################################
|
50 |
+
# single-image prompt
|
51 |
+
prompt = f"{user_prompt}<|image_1|>\nWhat is shown in this image?{prompt_suffix}{assistant_prompt}"
|
52 |
+
url = "https://www.ilankelman.org/stopsigns/australia.jpg"
|
53 |
+
print(f">>> Prompt\n{prompt}")
|
54 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
55 |
+
inputs = processor(prompt, image, return_tensors="pt").to("cuda:0")
|
56 |
+
generate_ids = model.generate(**inputs,
|
57 |
+
max_new_tokens=1000,
|
58 |
+
eos_token_id=processor.tokenizer.eos_token_id,
|
59 |
+
)
|
60 |
+
generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
|
61 |
+
response = processor.batch_decode(generate_ids,
|
62 |
+
skip_special_tokens=True,
|
63 |
+
clean_up_tokenization_spaces=False)[0]
|
64 |
+
print(f'>>> Response\n{response}')
|
65 |
+
|
66 |
+
#################################################### EXAMPLE 2 ####################################################
|
67 |
+
# chat template
|
68 |
+
chat = [
|
69 |
+
{"role": "user", "content": "<|image_1|>\nWhat is shown in this image?"},
|
70 |
+
{"role": "assistant", "content": "The image depicts a street scene with a prominent red stop sign in the foreground. The background showcases a building with traditional Chinese architecture, characterized by its red roof and ornate decorations. There are also several statues of lions, which are common in Chinese culture, positioned in front of the building. The street is lined with various shops and businesses, and there's a car passing by."},
|
71 |
+
{"role": "user", "content": "What is so special about this image"}
|
72 |
+
]
|
73 |
+
url = "https://www.ilankelman.org/stopsigns/australia.jpg"
|
74 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
75 |
+
prompt = processor.tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
|
76 |
+
# need to remove last <|endoftext|> if it is there, which is used for training, not inference. For training, make sure to add <|endoftext|> in the end.
|
77 |
+
if prompt.endswith("<|endoftext|>"):
|
78 |
+
prompt = prompt.rstrip("<|endoftext|>")
|
79 |
+
|
80 |
+
print(f">>> Prompt\n{prompt}")
|
81 |
+
|
82 |
+
inputs = processor(prompt, [image], return_tensors="pt").to("cuda:0")
|
83 |
+
generate_ids = model.generate(**inputs,
|
84 |
+
max_new_tokens=1000,
|
85 |
+
eos_token_id=processor.tokenizer.eos_token_id,
|
86 |
+
)
|
87 |
+
generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
|
88 |
+
response = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
89 |
+
print(f'>>> Response\n{response}')
|
90 |
+
|
91 |
+
|
92 |
+
############################# to markdown #############################
|
93 |
+
# single-image prompt
|
94 |
+
prompt = f"{user_prompt}<|image_1|>\nCan you convert the table to markdown format?{prompt_suffix}{assistant_prompt}"
|
95 |
+
url = "https://support.content.office.net/en-us/media/3dd2b79b-9160-403d-9967-af893d17b580.png"
|
96 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
97 |
+
inputs = processor(prompt, image, return_tensors="pt").to("cuda:0")
|
98 |
+
|
99 |
+
print(f">>> Prompt\n{prompt}")
|
100 |
+
generate_ids = model.generate(**inputs,
|
101 |
+
max_new_tokens=1000,
|
102 |
+
eos_token_id=processor.tokenizer.eos_token_id,
|
103 |
+
)
|
104 |
+
generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
|
105 |
+
response = processor.batch_decode(generate_ids,
|
106 |
+
skip_special_tokens=False,
|
107 |
+
clean_up_tokenization_spaces=False)[0]
|
108 |
+
print(f'>>> Response\n{response}')
|