--- base_model: CohereForAI/c4ai-command-r7b-12-2024 language: - en - fr - de - es - it - pt - ja - ko - zh - ar - el - fa - pl - id - cs - he - hi - nl - ro - ru - tr - uk - vi library_name: transformers license: cc-by-nc-4.0 tags: - mlx inference: false extra_gated_prompt: By submitting this form, you agree to the [License Agreement](https://cohere.com/c4ai-cc-by-nc-license) and acknowledge that the information you provide will be collected, used, and shared in accordance with Cohere’s [Privacy Policy]( https://cohere.com/privacy). You’ll receive email updates about C4AI and Cohere research, events, products and services. You can unsubscribe at any time. extra_gated_fields: Name: text Affiliation: text Country: country I agree to use this model for non-commercial use ONLY: checkbox --- # mlx-community/c4ai-command-r7b-12-2024-4bit The Model [mlx-community/c4ai-command-r7b-12-2024-4bit](https://huggingface.co/mlx-community/c4ai-command-r7b-12-2024-4bit) was converted to MLX format from [CohereForAI/c4ai-command-r7b-12-2024](https://huggingface.co/CohereForAI/c4ai-command-r7b-12-2024) using mlx-lm version **0.20.4**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("mlx-community/c4ai-command-r7b-12-2024-4bit") prompt="hello" if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```