Image Classification
mlx-image
Safetensors
MLX
vision
File size: 1,569 Bytes
244c461
 
 
 
 
 
 
 
 
 
 
9a1d8c3
244c461
cd5c4ee
244c461
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
685a16b
244c461
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0383ba7
244c461
0383ba7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
license: apache-2.0
tags:
- mlx
- mlx-image
- vision
- image-classification
datasets:
- imagenet-1k
library_name: mlx-image
---
# vit_base_patch16_224.swag_lin

A [Vision Transformer](https://arxiv.org/abs/2010.11929v2) image classification model. Weights are learned with [SWAG](https://arxiv.org/abs/2201.08371) on ImageNet-1k data.

Disclaimer: This is a porting of the torchvision model weights to Apple MLX Framework.


## How to use
```bash
pip install mlx-image
```

Here is how to use this model for image classification:

```python
from mlxim.model import create_model
from mlxim.io import read_rgb
from mlxim.transform import ImageNetTransform

transform = ImageNetTransform(train=False, img_size=224)
x = transform(read_rgb("cat.png"))
x = mx.expand_dims(x, 0)

model = create_model("vit_base_patch16_224.swag_lin")
model.eval()

logits = model(x)
```

You can also use the embeds from layer before head:
```python
from mlxim.model import create_model
from mlxim.io import read_rgb
from mlxim.transform import ImageNetTransform

transform = ImageNetTransform(train=False, img_size=224)
x = transform(read_rgb("cat.png"))
x = mx.expand_dims(x, 0)

# first option
model = create_model("vit_base_patch16_224.swag_lin", num_classes=0)
model.eval()

embeds = model(x)

# second option
model = create_model("vit_base_patch16_224.swag_lin")
model.eval()

embeds = model.features(x)
```


## Model Comparison

Explore the metrics of this model in [mlx-image model results](https://github.com/riccardomusmeci/mlx-image/blob/main/results/results-imagenet-1k.csv).