File size: 1,573 Bytes
6e72899 bfa5ced 6e72899 bfa5ced 62d9f3a bfa5ced 62d9f3a bfa5ced 1cd7c06 bfa5ced |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
---
license: apache-2.0
tags:
- mlx
- mlx-image
- vision
- image-classification
datasets:
- imagenet-1k
library_name: mlx-image
---
# vit_base_patch16_384.swag_e2e
A [Vision Transformer](https://arxiv.org/abs/2010.11929v2) image classification model. Weights are learned with [SWAG](https://arxiv.org/abs/2201.08371) on ImageNet-1k data.
Disclaimer: This is a porting of the torchvision model weights to Apple MLX Framework.
## How to use
```bash
pip install mlx-image
```
Here is how to use this model for image classification:
```python
from mlxim.model import create_model
from mlxim.io import read_rgb
from mlxim.transform import ImageNetTransform
transform = ImageNetTransform(train=False, img_size=384)
x = transform(read_rgb("cat.png"))
x = mx.expand_dims(x, 0)
model = create_model("vit_base_patch16_384.swag_e2e")
model.eval()
logits = model(x)
```
You can also use the embeds from layer before head:
```python
from mlxim.model import create_model
from mlxim.io import read_rgb
from mlxim.transform import ImageNetTransform
transform = ImageNetTransform(train=False, img_size=384)
x = transform(read_rgb("cat.png"))
x = mx.expand_dims(x, 0)
# first option
model = create_model("vit_base_patch16_384.swag_e2e", num_classes=0)
model.eval()
embeds = model(x)
# second option
model = create_model("vit_base_patch16_384.swag_e2e")
model.eval()
embeds = model.get_features(x)
```
## Model Comparison
Explore the metrics of this model in [mlx-image model results](https://github.com/riccardomusmeci/mlx-image/blob/main/results/results-imagenet-1k.csv). |