File size: 1,597 Bytes
5e1418e 1046c25 5e1418e 1046c25 d459ba0 1046c25 bebdaff 80043dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
---
license: apache-2.0
language:
- pl
pipeline_tag: automatic-speech-recognition
tags:
- audio
datasets:
- Aspik101/distil-whisper-large-v3-pl
library_name: ctranslate2
---
<style>
img {
display: inline;
}
</style>
# Fine-tuned Polish Aspik101/distil-whisper-large-v3-pl model for CTranslate2
This repository contains the [Aspik101/distil-whisper-large-v3-pl](https://huggingface.co/Aspik101/distil-whisper-large-v3-pl) model converted to the [CTranslate2](https://github.com/OpenNMT/CTranslate2) format.
## Usage
```python
from faster_whisper import WhisperModel
from huggingface_hub import snapshot_download
downloaded_model_path = snapshot_download(repo_id="mmalyska/distil-whisper-large-v3-pl-ct2")
# Run on GPU with FP16
model = WhisperModel(downloaded_model_path, device="cuda", compute_type="float16")
# or run on GPU with INT8
# model = WhisperModel(downloaded_model_path, device="cuda", compute_type="int8_float16")
# or run on CPU with INT8
# model = WhisperModel(downloaded_model_path, device="cpu", compute_type="int8")
segments, info = model.transcribe("./sample.wav", beam_size=1)
print("Detected language '%s' with probability %f" % (info.language, info.language_probability))
for segment in segments:
print("[%.2fs -> %.2fs] %s" % (segment.start, segment.end, segment.text))
```
## Conversion
The original model was converted with the following command:
```bash
ct2-transformers-converter --model Aspik101/distil-whisper-large-v3-pl --output_dir distil-whisper-large-v3-pl-ct2 --copy_files tokenizer.json preprocessor_config.json --quantization float16
``` |