{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fd78f991b00>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684318631575925983, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAESMkj7k05q/GmvBPGT8Ez92YKE/mdRWPsF+uD7SJJ2/N5DgPhgWZT9b1bM/VwzTPs/7mD2Ckau/WjFPP5Dqgryx1KM+qSkov4z5FT9W3q4/NxbAPusI4T6G12q+nWj0v5Bhc79sYvK/z9UcP96Jg7/79Y4+JTNdv0rxnD4Uy9I+Fx9Fv9Ce/T67O3e+I+Y6v/3ZGD/TNpS8oU4WP4hyZb/p4Yi/e7Z1P0u/Nz8xv12/jj2Nv/EknL24iew+poaYv03MMb+3lGU9SYQ1vz4mgT/3ooY/bGLyv8/VHD/eiYO/siU4PzMZGr+GPOQ+apbhvjUmKEB8qpg/3YPqPquK8j4FeBk/u0UrvZfJeb+FJku8x/iTP/pruz+2y32/1nN3v0QJNr62HwxAxtkvv2573z6qjwVAXMUWP3+AKT9ONsC9kGFzv7AwBz/P1Rw/AB15P+ymSz9FHOm+Aqv/PkKlaD+yEUhAJEmAvxObRT+MfDm/+DvRPrTD+D2TQ5++k73GP78KFUD1ceO8RwHSPl2qLUBLNI4/az5Jv7/dnb16GaY/8WGqvnr3rb9k7x8/qaODv5Bhc7+wMAc/z9UcPwAdeT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADPCNm1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAq2Y2uwAAAADsDvi/AAAAAMa2Nr0AAAAAjR74PwAAAABxaju8AAAAAOCB/j8AAAAAsFl6PAAAAADGV92/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA55HFNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgGiVpjwAAAAAysngvwAAAAAkB9w7AAAAACS7/j8AAAAAuLzvOQAAAAB1u90/AAAAAMT9oL0AAAAAGav8vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGdKzLYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICVES49AAAAAP6a4b8AAAAAC0W6vAAAAAApFOg/AAAAAAsHSr0AAAAApBL1PwAAAACoGRA+AAAAAHbu5b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACEXYG1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACArMn2vQAAAACfWfa/AAAAANuufDwAAAAAcUXsPwAAAABNFdq9AAAAAA6h2j8AAAAAnNyJPQAAAACpC9m/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJsngrbxmTWMAWyUTegDjAF0lEdArFHzWNFSbnV9lChoBkdAgaY/HHWBjGgHTegDaAhHQKxW9FKkEcN1fZQoaAZHQJpp4URFqi5oB03oA2gIR0CsWLwHzH0cdX2UKGgGR0Br1U3GXHBDaAdN6ANoCEdArF3cyvcJt3V9lChoBkdAl1aiq+8Gs2gHTegDaAhHQKxh5ylvZRN1fZQoaAZHQIYZgiV0Lc9oB03oA2gIR0CsZ70VJtiydX2UKGgGR0CDswlSCOFQaAdN6ANoCEdArGmR1Tzd13V9lChoBkdAhZZNmL9/BmgHTegDaAhHQKxtStPpIMB1fZQoaAZHQIWECzNUwSJoB03oA2gIR0Csb/mj9GZvdX2UKGgGR0CLgLITXarWaAdN6ANoCEdArHUEju8brHV9lChoBkdAlThm5QP7N2gHTegDaAhHQKx2wABDG991fZQoaAZHQJUBA5NoJzFoB03oA2gIR0Cse0Z4Oc2BdX2UKGgGR0CY0GEi+tbLaAdN6ANoCEdArH8+R9w3pHV9lChoBkdAjWLZaV2RrGgHTegDaAhHQKyF/QWN3np1fZQoaAZHQH7BoWHk92ZoB03oA2gIR0Csh76jN6gNdX2UKGgGR0CHfkEPlMh6aAdN6ANoCEdArItw0sOG03V9lChoBkdAnPCXuAqd6WgHTegDaAhHQKyOIHJtBOZ1fZQoaAZHQJbdjh60IC5oB03oA2gIR0CskzYNI9TxdX2UKGgGR0CdYxtWMju8aAdN6ANoCEdArJUCwMYuTXV9lChoBkdAmqn/siSq2mgHTegDaAhHQKyY7vhIe5p1fZQoaAZHQJT/+Q5myxBoB03oA2gIR0CsnMXI2fkFdX2UKGgGR0CHIibfgrH3aAdN6ANoCEdArKQduzhP03V9lChoBkdAmzPG4AjptGgHTegDaAhHQKyl04tHxz91fZQoaAZHQJ3uK5NGmUJoB03oA2gIR0CsqWBY/3WXdX2UKGgGR0CeV9maYu01aAdN6ANoCEdArKv8XgtOEnV9lChoBkdAnXTHE61b7mgHTegDaAhHQKywzHd43WF1fZQoaAZHQJp6q5tm+TNoB03oA2gIR0CssnvoFFDwdX2UKGgGR0Cc6r4+KTB7aAdN6ANoCEdArLYFkz41xnV9lChoBkdAmpINXHR1HWgHTegDaAhHQKy5QJdB0IV1fZQoaAZHQJrmrD4xk/doB03oA2gIR0CswJzJ6po9dX2UKGgGR0CbbTIIF/x2aAdN6ANoCEdArMMOOGTLXHV9lChoBkdAmM1PsVtXP2gHTegDaAhHQKzGose4kNZ1fZQoaAZHQJuArU2DQJJoB03oA2gIR0CsyUJA+pwTdX2UKGgGR0CWWjVbA1vVaAdN6ANoCEdArM4iLjxTbXV9lChoBkdAlyF3SF49o2gHTegDaAhHQKzP16UJOWV1fZQoaAZHQJZTkVO9FnZoB03oA2gIR0Cs03VmSQo1dX2UKGgGR0CZVH+t8uzyaAdN6ANoCEdArNYcZR8+inV9lChoBkdAmO9IuGsV+WgHTegDaAhHQKzdQIoE0SB1fZQoaAZHQJl6oBgeA/doB03oA2gIR0Cs3/G0NSZSdX2UKGgGR0CZ55SDyvs7aAdN6ANoCEdArOSJmPHT7XV9lChoBkdAmsxJXEIgNmgHTegDaAhHQKznO3uuzQh1fZQoaAZHQJxV2ncclw9oB03oA2gIR0Cs7GxSYPXkdX2UKGgGR0CaLxOx0MgEaAdN6ANoCEdArO5Bo0ygw3V9lChoBkdAnBOh2fTTfGgHTegDaAhHQKzx5N4Z/Ct1fZQoaAZHQJvtz/o7muFoB03oA2gIR0Cs9JF0YCQtdX2UKGgGR0CXfCVJ+UhWaAdN6ANoCEdArPrhqGlANXV9lChoBkdAjkHIYekpJGgHTegDaAhHQKz9fo+wC8x1fZQoaAZHQJuXWdVea8ZoB03oA2gIR0CtAp2LP2PDdX2UKGgGR0CVRUgtOEdvaAdN6ANoCEdArQVByjpLVXV9lChoBkdAkTc2DpTuOWgHTegDaAhHQK0KOiW3Sa51fZQoaAZHQJjG9hoduHhoB03oA2gIR0CtC/AVO9FndX2UKGgGR0CZKWcSoOx0aAdN6ANoCEdArQ+SFVT723V9lChoBkdAkiBYXj2i+WgHTegDaAhHQK0SNyCnP3V1fZQoaAZHQJvjQCr92oxoB03oA2gIR0CtF7KlxffGdX2UKGgGR0CZnPQ3xWkraAdN6ANoCEdArRobaAWi13V9lChoBkdAmzfB/mT1TWgHTegDaAhHQK0fnXOnl4l1fZQoaAZHQJfHgAlv60poB03oA2gIR0CtItK3mV7hdX2UKGgGR0CK6OvMbFS9aAdN6ANoCEdArSfMoWpIc3V9lChoBkdAkTDl4oqkM2gHTegDaAhHQK0pkMqjJuF1fZQoaAZHQI4vKW5Yoy9oB03oA2gIR0CtLTgxagVXdX2UKGgGR0CVrumb9ZRsaAdN6ANoCEdArS/tSGahH3V9lChoBkdAlr5lklNUO2gHTegDaAhHQK003XgccVB1fZQoaAZHQIxtlX7tReloB03oA2gIR0CtNyVM23rldX2UKGgGR0Cc2nxwAEMcaAdN6ANoCEdArTxiDyvs7nV9lChoBkdAjuJ1/DtPYWgHTegDaAhHQK1AeIrvsqt1fZQoaAZHQIq3N03fhuRoB03oA2gIR0CtRXX/YJ3QdX2UKGgGR0CcrarGR3eOaAdN6ANoCEdArUcqb4Ju23V9lChoBkdAlmesfFJg9mgHTegDaAhHQK1K0FCb+cZ1fZQoaAZHQJRxyKEWZZ1oB03oA2gIR0CtTY91dPcjdX2UKGgGR0CE4AbG3nZCaAdN6ANoCEdArVJ1I065oXV9lChoBkdAicwRyfcvd2gHTegDaAhHQK1UNzRQaaV1fZQoaAZHQJJQLdP+GXZoB03oA2gIR0CtWSqbjLjhdX2UKGgGR0CN4wWLP2PDaAdN6ANoCEdArV09hRZU1nV9lChoBkdAi5hG/vfCRGgHTegDaAhHQK1jGejmCAd1fZQoaAZHQJFNzRv3rUtoB03oA2gIR0CtZN8TakAQdX2UKGgGR0CQiHEroW56aAdN6ANoCEdArWiRFI/Z/XV9lChoBkdAkzxxoAXEZWgHTegDaAhHQK1rRcbiqAB1fZQoaAZHQJh6d3Y+Sr5oB03oA2gIR0CtcDjVQQ+VdX2UKGgGR0CU1ktNi6QOaAdN6ANoCEdArXHooVmBfHV9lChoBkdAmvnYO2AoX2gHTegDaAhHQK12L+YMOPN1fZQoaAZHQJhHbcTJyQxoB03oA2gIR0Cteg6F23a0dX2UKGgGR0CYbmwrUb1iaAdN6ANoCEdArYDnoRqXW3V9lChoBkdAnkdhcZ9/jWgHTegDaAhHQK2CljAi3Xt1fZQoaAZHQJiY9zKcNH9oB03oA2gIR0Cthje0w8GLdX2UKGgGR0CdehsHjZL7aAdN6ANoCEdArYjixA0KqnV9lChoBkdAl7zKcRUWEmgHTegDaAhHQK2NxHMlkYp1fZQoaAZHQJke+fywwCdoB03oA2gIR0Ctj35+6RQrdX2UKGgGR0CbpJKF7D2raAdN6ANoCEdArZMcm0E5hnV9lChoBkdAmHVI4dZJTWgHTegDaAhHQK2W0N0eU6h1fZQoaAZHQIxw5amoBJZoB03oA2gIR0CtnmbHIZIhdX2UKGgGR0CUyVvIfbKzaAdN6ANoCEdAraBAXKr7wnV9lChoBkdAjXe2rfcesGgHTegDaAhHQK2j3H7P6bh1fZQoaAZHQIfwYte2NNtoB03oA2gIR0CtppuwxFiKdX2UKGgGR0CTIfXEZR8/aAdN6ANoCEdArauOcH4XXXV9lChoBkdAjIHZbhWHUWgHTegDaAhHQK2tRKPGQ0Z1fZQoaAZHQIXJ2fdyksVoB03oA2gIR0CtsOOJcgQpdX2UKGgGR0CPz7gw482aaAdN6ANoCEdArbPtIVdonXV9lChoBkdAkhd0QbuMM2gHTegDaAhHQK27VPci4ax1fZQoaAZHQIgdsVafSQZoB03oA2gIR0CtvgzYEnstdX2UKGgGR0CHDOpH7P6baAdN6ANoCEdArcHAm/nGKnVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}