mmhamdy commited on
Commit
af9ad7d
·
1 Parent(s): 8e43992

Initial commit

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: PandaReachDense-v2
17
  metrics:
18
  - type: mean_reward
19
- value: -12.11 +/- 4.88
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: PandaReachDense-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: -0.63 +/- 0.16
20
  name: mean_reward
21
  verified: false
22
  ---
a2c-PandaReachDense-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e5a93b54725217771253540592e47e7e36ac8fa6e6c838d9af4e3a082499f557
3
- size 108076
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8337b6db7cf0eb7b5596c656346f9699e74f16c13c13510e29b176645f53d559
3
+ size 108063
a2c-PandaReachDense-v2/data CHANGED
@@ -4,9 +4,9 @@
4
  ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fd78f9967a0>",
8
  "__abstractmethods__": "frozenset()",
9
- "_abc_impl": "<_abc._abc_data object at 0x7fd78f991c40>"
10
  },
11
  "verbose": 1,
12
  "policy_kwargs": {
@@ -19,12 +19,12 @@
19
  "weight_decay": 0
20
  }
21
  },
22
- "num_timesteps": 2000000,
23
- "_total_timesteps": 2000000,
24
  "_num_timesteps_at_start": 0,
25
  "seed": null,
26
  "action_noise": null,
27
- "start_time": 1684327104041118025,
28
  "learning_rate": 0.0007,
29
  "tensorboard_log": null,
30
  "lr_schedule": {
@@ -33,10 +33,10 @@
33
  },
34
  "_last_obs": {
35
  ":type:": "<class 'collections.OrderedDict'>",
36
- ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAALAScPvrcir1SDHQ/LAScPvrcir1SDHQ/LAScPvrcir1SDHQ/LAScPvrcir1SDHQ/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAednHPwBwMD/koaO+XkZrv4bHlT3QD1w/kQPIP3TzGr5yCRo+kXNhvotI07+FCae/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAsBJw++tyKvVIMdD9nxnE9QEAfPEEGiD0sBJw++tyKvVIMdD9nxnE9QEAfPEEGiD0sBJw++tyKvVIMdD9nxnE9QEAfPEEGiD0sBJw++tyKvVIMdD9nxnE9QEAfPEEGiD2UaA5LBEsGhpRoEnSUUpR1Lg==",
37
- "achieved_goal": "[[ 0.30471933 -0.06780429 0.953313 ]\n [ 0.30471933 -0.06780429 0.953313 ]\n [ 0.30471933 -0.06780429 0.953313 ]\n [ 0.30471933 -0.06780429 0.953313 ]]",
38
- "desired_goal": "[[ 1.5613242 0.689209 -0.3195945 ]\n [-0.91904247 0.07313447 0.8596163 ]\n [ 1.5626088 -0.15131932 0.15042666]\n [-0.22016741 -1.6506513 -1.304978 ]]",
39
- "observation": "[[ 0.30471933 -0.06780429 0.953313 0.0590271 0.00971991 0.06641818]\n [ 0.30471933 -0.06780429 0.953313 0.0590271 0.00971991 0.06641818]\n [ 0.30471933 -0.06780429 0.953313 0.0590271 0.00971991 0.06641818]\n [ 0.30471933 -0.06780429 0.953313 0.0590271 0.00971991 0.06641818]]"
40
  },
41
  "_last_episode_starts": {
42
  ":type:": "<class 'numpy.ndarray'>",
@@ -44,9 +44,9 @@
44
  },
45
  "_last_original_obs": {
46
  ":type:": "<class 'collections.OrderedDict'>",
47
- ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAll+5PLZXqrwgPfA9x3K6u+F3BT7xjQk9zgR6PHBNJzyr/7A7XrLJvKSLfr0Z2ls+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
48
  "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
49
- "desired_goal": "[[ 0.02262859 -0.02079378 0.11730409]\n [-0.00568995 0.13034011 0.03358263]\n [ 0.01525993 0.01021133 0.00540157]\n [-0.02462118 -0.06214489 0.21469916]]",
50
  "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
51
  },
52
  "_episode_num": 0,
@@ -56,13 +56,13 @@
56
  "_stats_window_size": 100,
57
  "ep_info_buffer": {
58
  ":type:": "<class 'collections.deque'>",
59
- ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIdopVgzCHFMCUhpRSlIwBbJRLMowBdJRHQLXQmVo6CDp1fZQoaAZoCWgPQwh1rb1PVWEzwJSGlFKUaBVLMmgWR0C10HimqHXVdX2UKGgGaAloD0MIj1Tf+UXpGsCUhpRSlGgVSzJoFkdAtdBW7ZnL73V9lChoBmgJaA9DCKZFfZI7hCXAlIaUUpRoFUsyaBZHQLXQN8nNPgx1fZQoaAZoCWgPQwiBd/LpsY0bwJSGlFKUaBVLMmgWR0C10RzlLeyidX2UKGgGaAloD0MIaD18mSiqLcCUhpRSlGgVSzJoFkdAtdD7rxAjZHV9lChoBmgJaA9DCCbkg57Noi3AlIaUUpRoFUsyaBZHQLXQ2lyBCld1fZQoaAZoCWgPQwim0k84u7UcwJSGlFKUaBVLMmgWR0C10LsnJDE4dX2UKGgGaAloD0MImboru2D4K8CUhpRSlGgVSzJoFkdAtdGdFkQPJHV9lChoBmgJaA9DCHgMj/0sTiPAlIaUUpRoFUsyaBZHQLXRfIKtxMp1fZQoaAZoCWgPQwiifEELCZgiwJSGlFKUaBVLMmgWR0C10VqwMYuTdX2UKGgGaAloD0MIPkLNkCq6KcCUhpRSlGgVSzJoFkdAtdE74Ju2qnV9lChoBmgJaA9DCC3ovTEEICXAlIaUUpRoFUsyaBZHQLXSJyI55qx1fZQoaAZoCWgPQwjG4cyv5tglwJSGlFKUaBVLMmgWR0C10gYNRWLhdX2UKGgGaAloD0MIMUROX8+jMcCUhpRSlGgVSzJoFkdAtdHk2WIGhXV9lChoBmgJaA9DCD9uv3yycjHAlIaUUpRoFUsyaBZHQLXRxirDIil1fZQoaAZoCWgPQwgAjGfQ0BczwJSGlFKUaBVLMmgWR0C10qLEYO2BdX2UKGgGaAloD0MIJh5QNuUKGsCUhpRSlGgVSzJoFkdAtdKBuZThpHV9lChoBmgJaA9DCCXJc30f/ifAlIaUUpRoFUsyaBZHQLXSX+Cbtqp1fZQoaAZoCWgPQwjo+dNGdSojwJSGlFKUaBVLMmgWR0C10kCrgflqdX2UKGgGaAloD0MIdck4RrJTNMCUhpRSlGgVSzJoFkdAtdMnYL9deXV9lChoBmgJaA9DCJdvfVhvHCfAlIaUUpRoFUsyaBZHQLXTBqFAVwh1fZQoaAZoCWgPQwgyPWGJB8wpwJSGlFKUaBVLMmgWR0C10uTurp7kdX2UKGgGaAloD0MIcGByo8g+MsCUhpRSlGgVSzJoFkdAtdLGuieum3V9lChoBmgJaA9DCBwo8E4+jSjAlIaUUpRoFUsyaBZHQLXTnLsrupl1fZQoaAZoCWgPQwgwoBfuXGAlwJSGlFKUaBVLMmgWR0C103uQp4KQdX2UKGgGaAloD0MI61bPSe9LG8CUhpRSlGgVSzJoFkdAtdNZzDGcWnV9lChoBmgJaA9DCL+36c9+PCHAlIaUUpRoFUsyaBZHQLXTOrjHXEt1fZQoaAZoCWgPQwiWIY51cZ8ywJSGlFKUaBVLMmgWR0C11CVmvnr6dX2UKGgGaAloD0MIev1JfO6kIMCUhpRSlGgVSzJoFkdAtdQEVbiZOXV9lChoBmgJaA9DCFN5O8Jp+SXAlIaUUpRoFUsyaBZHQLXT4oUSIxh1fZQoaAZoCWgPQwhLWvENha8swJSGlFKUaBVLMmgWR0C108NYOlO5dX2UKGgGaAloD0MI0eY4twmTNMCUhpRSlGgVSzJoFkdAtdSkoa1kUnV9lChoBmgJaA9DCMIyNnSzdynAlIaUUpRoFUsyaBZHQLXUg4TK1Xx1fZQoaAZoCWgPQwiw5ZXrbS8xwJSGlFKUaBVLMmgWR0C11GIGY8dQdX2UKGgGaAloD0MIym37HvX3JcCUhpRSlGgVSzJoFkdAtdRCvs7dSHV9lChoBmgJaA9DCFuVRPZBSjHAlIaUUpRoFUsyaBZHQLXVLsV+I/J1fZQoaAZoCWgPQwifBDbn4AknwJSGlFKUaBVLMmgWR0C11Q2VNYbLdX2UKGgGaAloD0MIUitM32uYEMCUhpRSlGgVSzJoFkdAtdTr2alUInV9lChoBmgJaA9DCInUtItp3inAlIaUUpRoFUsyaBZHQLXUzRmK64F1fZQoaAZoCWgPQwjbwB2oU8YjwJSGlFKUaBVLMmgWR0C11bhoIv8JdX2UKGgGaAloD0MI4297gsQWMsCUhpRSlGgVSzJoFkdAtdWXvphWo3V9lChoBmgJaA9DCL6ItmPqRjDAlIaUUpRoFUsyaBZHQLXVdmoBJZp1fZQoaAZoCWgPQwitFthjIukwwJSGlFKUaBVLMmgWR0C11VciwB5pdX2UKGgGaAloD0MIV5QSglXVKMCUhpRSlGgVSzJoFkdAtdZA6QvHtHV9lChoBmgJaA9DCETDYtS1FjPAlIaUUpRoFUsyaBZHQLXWIEpRXOp1fZQoaAZoCWgPQwhGW5VE9uU0wJSGlFKUaBVLMmgWR0C11f8gMc6vdX2UKGgGaAloD0MISx3k9WDKJMCUhpRSlGgVSzJoFkdAtdXgGkep43V9lChoBmgJaA9DCNBgU+dRGSPAlIaUUpRoFUsyaBZHQLXW+aoMrmR1fZQoaAZoCWgPQwhUcHhBRAYywJSGlFKUaBVLMmgWR0C11tjABT4tdX2UKGgGaAloD0MIZ195kJ4yKMCUhpRSlGgVSzJoFkdAtda3LwF1S3V9lChoBmgJaA9DCFjFG5lHpjDAlIaUUpRoFUsyaBZHQLXWmVzp5eJ1fZQoaAZoCWgPQwizeofboWEnwJSGlFKUaBVLMmgWR0C117AAIY3vdX2UKGgGaAloD0MI66wW2GNuNcCUhpRSlGgVSzJoFkdAtdePGHYYi3V9lChoBmgJaA9DCBmMEYlCCxfAlIaUUpRoFUsyaBZHQLXXbcJdB0J1fZQoaAZoCWgPQwj9o2/SNHAlwJSGlFKUaBVLMmgWR0C1107y1/lRdX2UKGgGaAloD0MIb5upEI/kFsCUhpRSlGgVSzJoFkdAtdhuJTER8XV9lChoBmgJaA9DCIuKOJ1kIzTAlIaUUpRoFUsyaBZHQLXYTlMRHwx1fZQoaAZoCWgPQwgU0a+tnz4wwJSGlFKUaBVLMmgWR0C12Cy+HrQgdX2UKGgGaAloD0MIFM0DWORvJ8CUhpRSlGgVSzJoFkdAtdgNvegte3V9lChoBmgJaA9DCK/rF+yGPSLAlIaUUpRoFUsyaBZHQLXZU/etSyd1fZQoaAZoCWgPQwicMcwJ2sQawJSGlFKUaBVLMmgWR0C12TNRvWH2dX2UKGgGaAloD0MITPp7KTzwLsCUhpRSlGgVSzJoFkdAtdkR6+nIhnV9lChoBmgJaA9DCOTbuwZ9gTTAlIaUUpRoFUsyaBZHQLXY9FtbcGl1fZQoaAZoCWgPQwgvGFxzRw8pwJSGlFKUaBVLMmgWR0C12g4vSMLndX2UKGgGaAloD0MIqg1ORL+WMMCUhpRSlGgVSzJoFkdAtdntUwSJ0nV9lChoBmgJaA9DCC7lfLH32inAlIaUUpRoFUsyaBZHQLXZy8IAwPB1fZQoaAZoCWgPQwj3dktywNYpwJSGlFKUaBVLMmgWR0C12azAN5MUdX2UKGgGaAloD0MIcM/zp42SLcCUhpRSlGgVSzJoFkdAtdro+PikwnV9lChoBmgJaA9DCFQZxt0g2jTAlIaUUpRoFUsyaBZHQLXayNlRP451fZQoaAZoCWgPQwgtliL5Srg6wJSGlFKUaBVLMmgWR0C12qd0NjLCdX2UKGgGaAloD0MIEhJpG39iK8CUhpRSlGgVSzJoFkdAtdqIfT1CgXV9lChoBmgJaA9DCDYhrTHo3CbAlIaUUpRoFUsyaBZHQLXbuSPluFZ1fZQoaAZoCWgPQwjx1Y7iHDUtwJSGlFKUaBVLMmgWR0C125hD1GsndX2UKGgGaAloD0MIRIoBEk1ALMCUhpRSlGgVSzJoFkdAtdt2xHG0eHV9lChoBmgJaA9DCEsi+yDL8jTAlIaUUpRoFUsyaBZHQLXbWFJg9eR1fZQoaAZoCWgPQwjQ8GYN3ockwJSGlFKUaBVLMmgWR0C13EtDx9XtdX2UKGgGaAloD0MIg8E1d/TvGsCUhpRSlGgVSzJoFkdAtdwqS+xnnXV9lChoBmgJaA9DCHFa8KKvWCnAlIaUUpRoFUsyaBZHQLXcCJTER8N1fZQoaAZoCWgPQwhblNkgk2wswJSGlFKUaBVLMmgWR0C12+lNDc/MdX2UKGgGaAloD0MIU3qmlxjLG8CUhpRSlGgVSzJoFkdAtdzGAkLQX3V9lChoBmgJaA9DCJEJ+DWSRDLAlIaUUpRoFUsyaBZHQLXcpVf/m1Z1fZQoaAZoCWgPQwj3yVGAKPgpwJSGlFKUaBVLMmgWR0C13IOH8CPqdX2UKGgGaAloD0MIeAyP/Sw+IsCUhpRSlGgVSzJoFkdAtdxkSsbNr3V9lChoBmgJaA9DCMl2vp8azy7AlIaUUpRoFUsyaBZHQLXdOZflZHN1fZQoaAZoCWgPQwi5Nem2RIYkwJSGlFKUaBVLMmgWR0C13Rhun/DMdX2UKGgGaAloD0MIw9fXutTQKcCUhpRSlGgVSzJoFkdAtdz2pJf6XXV9lChoBmgJaA9DCIEKR5BKISfAlIaUUpRoFUsyaBZHQLXc11IiC8R1fZQoaAZoCWgPQwjKFkm70VcvwJSGlFKUaBVLMmgWR0C13cPYSQHSdX2UKGgGaAloD0MIgse3dw0qH8CUhpRSlGgVSzJoFkdAtd2jKmsNlXV9lChoBmgJaA9DCLKgMCjTIDDAlIaUUpRoFUsyaBZHQLXdgc6vJRx1fZQoaAZoCWgPQwhNaf0tAXguwJSGlFKUaBVLMmgWR0C13WKCYkVvdX2UKGgGaAloD0MIH/gYrDiNJcCUhpRSlGgVSzJoFkdAtd4+wFC9iHV9lChoBmgJaA9DCGx55XrbvBjAlIaUUpRoFUsyaBZHQLXeHdDpkf91fZQoaAZoCWgPQwg+z582qlsiwJSGlFKUaBVLMmgWR0C13fwgHNX6dX2UKGgGaAloD0MIuHTMecZWM8CUhpRSlGgVSzJoFkdAtd3dH7P6bnV9lChoBmgJaA9DCPzHQnQI/CfAlIaUUpRoFUsyaBZHQLXesKlpGnZ1fZQoaAZoCWgPQwhSnnk57GYxwJSGlFKUaBVLMmgWR0C13o+yiVSodX2UKGgGaAloD0MIw2LUtfa+KcCUhpRSlGgVSzJoFkdAtd5t3fQ8fXV9lChoBmgJaA9DCEhrDDohLCHAlIaUUpRoFUsyaBZHQLXeTpZfUnZ1ZS4="
60
  },
61
  "ep_success_buffer": {
62
  ":type:": "<class 'collections.deque'>",
63
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
64
  },
65
- "_n_updates": 100000,
66
  "n_steps": 5,
67
  "gamma": 0.99,
68
  "gae_lambda": 1.0,
 
4
  ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fb70e356a70>",
8
  "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7fb70e359880>"
10
  },
11
  "verbose": 1,
12
  "policy_kwargs": {
 
19
  "weight_decay": 0
20
  }
21
  },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
  "_num_timesteps_at_start": 0,
25
  "seed": null,
26
  "action_noise": null,
27
+ "start_time": 1684397357494245643,
28
  "learning_rate": 0.0007,
29
  "tensorboard_log": null,
30
  "lr_schedule": {
 
33
  },
34
  "_last_obs": {
35
  ":type:": "<class 'collections.OrderedDict'>",
36
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAWO/PPqoToTyIaA8/WO/PPqoToTyIaA8/WO/PPqoToTyIaA8/WO/PPqoToTyIaA8/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAxnVaP88sjL1W/J0/ZpQBvwRdaz8tMoE956CEP73OO78AcKo/ihuov7xxIz+Ybbe/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABY788+qhOhPIhoDz/8PSI8cnhTO02GB7tY788+qhOhPIhoDz/8PSI8cnhTO02GB7tY788+qhOhPIhoDz/8PSI8cnhTO02GB7tY788+qhOhPIhoDz/8PSI8cnhTO02GB7uUaA5LBEsGhpRoEnSUUpR1Lg==",
37
+ "achieved_goal": "[[0.40612292 0.0196627 0.5601888 ]\n [0.40612292 0.0196627 0.5601888 ]\n [0.40612292 0.0196627 0.5601888 ]\n [0.40612292 0.0196627 0.5601888 ]]",
38
+ "desired_goal": "[[ 0.8533596 -0.06844484 1.2342632 ]\n [-0.50617063 0.91938806 0.06308398]\n [ 1.0361603 -0.7336233 1.331543 ]\n [-1.3133404 0.6384542 -1.433032 ]]",
39
+ "observation": "[[ 0.40612292 0.0196627 0.5601888 0.00990247 0.00322678 -0.00206794]\n [ 0.40612292 0.0196627 0.5601888 0.00990247 0.00322678 -0.00206794]\n [ 0.40612292 0.0196627 0.5601888 0.00990247 0.00322678 -0.00206794]\n [ 0.40612292 0.0196627 0.5601888 0.00990247 0.00322678 -0.00206794]]"
40
  },
41
  "_last_episode_starts": {
42
  ":type:": "<class 'numpy.ndarray'>",
 
44
  },
45
  "_last_original_obs": {
46
  ":type:": "<class 'collections.OrderedDict'>",
47
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA1SQkvVZuhrtFnmE+FxIVPdcT073MLuI9xjSfPG5wvLzFva49QDKtPbIECT5u2BM+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
48
  "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
49
+ "desired_goal": "[[-0.04007419 -0.00410251 0.22033031]\n [ 0.0363942 -0.10306519 0.11044082]\n [ 0.01943434 -0.02300283 0.08532289]\n [ 0.0845685 0.13380697 0.1443803 ]]",
50
  "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
51
  },
52
  "_episode_num": 0,
 
56
  "_stats_window_size": 100,
57
  "ep_info_buffer": {
58
  ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIUBpqFJLM5b+UhpRSlIwBbJRLMowBdJRHQKmwcvM8ox51fZQoaAZoCWgPQwhxrmGGxhPvv5SGlFKUaBVLMmgWR0CpsBgvtdAxdX2UKGgGaAloD0MIca32sBcK5b+UhpRSlGgVSzJoFkdAqa/BBu4wy3V9lChoBmgJaA9DCAh0Jm2q7u6/lIaUUpRoFUsyaBZHQKmvZKlpGnZ1fZQoaAZoCWgPQwi+aI8X0uHTv5SGlFKUaBVLMmgWR0CpsbExyn1ndX2UKGgGaAloD0MILA/SU+QQ5b+UhpRSlGgVSzJoFkdAqbFWbAk9lnV9lChoBmgJaA9DCCUH7GrylOi/lIaUUpRoFUsyaBZHQKmw/zzVc2R1fZQoaAZoCWgPQwiBJsKGp1frv5SGlFKUaBVLMmgWR0CpsKONPxhEdX2UKGgGaAloD0MI0xIro5HP97+UhpRSlGgVSzJoFkdAqbNF/x2B8XV9lChoBmgJaA9DCAzLn28LFuy/lIaUUpRoFUsyaBZHQKmy7C/oJRh1fZQoaAZoCWgPQwjTakjcY2niv5SGlFKUaBVLMmgWR0CpspXmNipedX2UKGgGaAloD0MIVtehmpKs3r+UhpRSlGgVSzJoFkdAqbI6mEXcg3V9lChoBmgJaA9DCOGVJM/1/eq/lIaUUpRoFUsyaBZHQKm1L2V3Ux51fZQoaAZoCWgPQwhf7pOjANHsv5SGlFKUaBVLMmgWR0CptNUfPompdX2UKGgGaAloD0MI8u8zLhyI67+UhpRSlGgVSzJoFkdAqbR+0iQkonV9lChoBmgJaA9DCFLt0/GYgeC/lIaUUpRoFUsyaBZHQKm0I1y/9Hd1fZQoaAZoCWgPQwgpyxDHurjxv5SGlFKUaBVLMmgWR0CptyR8UmD2dX2UKGgGaAloD0MIaTo7GRwl6L+UhpRSlGgVSzJoFkdAqbbK1gH/tXV9lChoBmgJaA9DCFJ/vcKC++q/lIaUUpRoFUsyaBZHQKm2dLpzLfV1fZQoaAZoCWgPQwhY4gFlU67rv5SGlFKUaBVLMmgWR0CpthleWv8qdX2UKGgGaAloD0MIyQT8GknC8L+UhpRSlGgVSzJoFkdAqblE98qnWXV9lChoBmgJaA9DCPp6vma57Pi/lIaUUpRoFUsyaBZHQKm46zUqhDh1fZQoaAZoCWgPQwiJCP8iaMzuv5SGlFKUaBVLMmgWR0CpuJUPH1e0dX2UKGgGaAloD0MIy9qmeFxU57+UhpRSlGgVSzJoFkdAqbg56IFeOXV9lChoBmgJaA9DCBuBeF2/IPS/lIaUUpRoFUsyaBZHQKm7SxrzoU11fZQoaAZoCWgPQwjxm8JKBRXev5SGlFKUaBVLMmgWR0CpuvEtNBWxdX2UKGgGaAloD0MIzm+YaJBC8L+UhpRSlGgVSzJoFkdAqbqa2KEWZnV9lChoBmgJaA9DCJbRyOcVz++/lIaUUpRoFUsyaBZHQKm6P3NcGC91fZQoaAZoCWgPQwhqa0QwDq7kv5SGlFKUaBVLMmgWR0CpvYUQTVUddX2UKGgGaAloD0MIyRzLu+rB8b+UhpRSlGgVSzJoFkdAqb0resPrfXV9lChoBmgJaA9DCGCuRQvQtuu/lIaUUpRoFUsyaBZHQKm81rgwXZZ1fZQoaAZoCWgPQwiIvruVJTrpv5SGlFKUaBVLMmgWR0CpvHtkvsZ6dX2UKGgGaAloD0MIeouH9xxY5b+UhpRSlGgVSzJoFkdAqb7rCtRvWHV9lChoBmgJaA9DCFyv6UFBKea/lIaUUpRoFUsyaBZHQKm+kB2fTTh1fZQoaAZoCWgPQwh+N92yQ3zlv5SGlFKUaBVLMmgWR0Cpvji/XXiBdX2UKGgGaAloD0MI/oAHBhA+4L+UhpRSlGgVSzJoFkdAqb3ccsDnvHV9lChoBmgJaA9DCPlqR3GOuu6/lIaUUpRoFUsyaBZHQKnAFS619fF1fZQoaAZoCWgPQwjWG7XC9L3Zv5SGlFKUaBVLMmgWR0Cpv7phfBvadX2UKGgGaAloD0MIWVLuPsdH27+UhpRSlGgVSzJoFkdAqb9jOJLuhXV9lChoBmgJaA9DCNOkFHR7Sde/lIaUUpRoFUsyaBZHQKm/Bvrnkkt1fZQoaAZoCWgPQwhMa9PYXovvv5SGlFKUaBVLMmgWR0CpwUDcdo38dX2UKGgGaAloD0MI9pUH6Sly47+UhpRSlGgVSzJoFkdAqcDl8/lhgHV9lChoBmgJaA9DCAJFLGLY4fS/lIaUUpRoFUsyaBZHQKnAjsC1Z1V1fZQoaAZoCWgPQwjBcoQM5Nnfv5SGlFKUaBVLMmgWR0CpwDJ8OTaCdX2UKGgGaAloD0MI5KJaRBQT5b+UhpRSlGgVSzJoFkdAqcJsSPEKmnV9lChoBmgJaA9DCACo4sYt5uS/lIaUUpRoFUsyaBZHQKnCEXfIjnp1fZQoaAZoCWgPQwj8OQX52cjuv5SGlFKUaBVLMmgWR0CpwbpQ+EAYdX2UKGgGaAloD0MI3ze+9swS5b+UhpRSlGgVSzJoFkdAqcFeB+Wnj3V9lChoBmgJaA9DCNWXpZ2ay+6/lIaUUpRoFUsyaBZHQKnDlQrtmcx1fZQoaAZoCWgPQwjNkgA1tWzwv5SGlFKUaBVLMmgWR0CpwzoatLcsdX2UKGgGaAloD0MIrHMMyF7v67+UhpRSlGgVSzJoFkdAqcLizollb3V9lChoBmgJaA9DCGmqJ/OPvuy/lIaUUpRoFUsyaBZHQKnChot+TeR1fZQoaAZoCWgPQwhZh6OrdPfvv5SGlFKUaBVLMmgWR0CpxLIMSbpedX2UKGgGaAloD0MIbxKDwMoh7r+UhpRSlGgVSzJoFkdAqcRXPC2tuHV9lChoBmgJaA9DCCHqPgCpTei/lIaUUpRoFUsyaBZHQKnEABdUsFt1fZQoaAZoCWgPQwhhN2xblNngv5SGlFKUaBVLMmgWR0Cpw6PcJtzkdX2UKGgGaAloD0MI8Bge+1ksz7+UhpRSlGgVSzJoFkdAqcXkF2V3U3V9lChoBmgJaA9DCFsLs9DO6eC/lIaUUpRoFUsyaBZHQKnFiWNWEK51fZQoaAZoCWgPQwiZoIZvYd3Tv5SGlFKUaBVLMmgWR0CpxTJ1q33IdX2UKGgGaAloD0MIGvz9Yrak8b+UhpRSlGgVSzJoFkdAqcTWIuXeFnV9lChoBmgJaA9DCPfJUYAoGOq/lIaUUpRoFUsyaBZHQKnHFP/rB0p1fZQoaAZoCWgPQwgVHcnlPyTkv5SGlFKUaBVLMmgWR0Cpxro+W4VidX2UKGgGaAloD0MIx0yiXvDp7r+UhpRSlGgVSzJoFkdAqcZjGWD6FnV9lChoBmgJaA9DCCEBo8ubw/K/lIaUUpRoFUsyaBZHQKnGBtlZowp1fZQoaAZoCWgPQwjfv3lx4qvtv5SGlFKUaBVLMmgWR0CpyERFy7wsdX2UKGgGaAloD0MI/dzQlJ1+5b+UhpRSlGgVSzJoFkdAqcfpqwhW53V9lChoBmgJaA9DCAwG19zRv/K/lIaUUpRoFUsyaBZHQKnHkoegctJ1fZQoaAZoCWgPQwgqV3iXizj0v5SGlFKUaBVLMmgWR0CpxzYtHxz8dX2UKGgGaAloD0MImdNlMbG58L+UhpRSlGgVSzJoFkdAqclyowVTJnV9lChoBmgJaA9DCNs2jILg8em/lIaUUpRoFUsyaBZHQKnJF+ocaOx1fZQoaAZoCWgPQwif6Lrwg3Plv5SGlFKUaBVLMmgWR0CpyMDOC5EudX2UKGgGaAloD0MIj20ZcJYS6r+UhpRSlGgVSzJoFkdAqchkhRqGlHV9lChoBmgJaA9DCPKVQErs2uy/lIaUUpRoFUsyaBZHQKnKnXp4bCJ1fZQoaAZoCWgPQwiIK2fvjPbyv5SGlFKUaBVLMmgWR0CpykKpkwvhdX2UKGgGaAloD0MIxXB1AMRd77+UhpRSlGgVSzJoFkdAqcnrhm5DqnV9lChoBmgJaA9DCJqxaDo7Gee/lIaUUpRoFUsyaBZHQKnJjz4k/r11fZQoaAZoCWgPQwjA0CNGz+3wv5SGlFKUaBVLMmgWR0Cpy8snAqNIdX2UKGgGaAloD0MIdJoF2h1S7r+UhpRSlGgVSzJoFkdAqctwREnb7HV9lChoBmgJaA9DCHeiJCTStu2/lIaUUpRoFUsyaBZHQKnLGQXhwVF1fZQoaAZoCWgPQwhqGD4ipkTxv5SGlFKUaBVLMmgWR0CpyryuyNXHdX2UKGgGaAloD0MI7bd2oiTk8r+UhpRSlGgVSzJoFkdAqc0BYPoV23V9lChoBmgJaA9DCBKDwMqhRd+/lIaUUpRoFUsyaBZHQKnMpnV5KOF1fZQoaAZoCWgPQwgg8SvWcFHxv5SGlFKUaBVLMmgWR0CpzE+xnnMddX2UKGgGaAloD0MIuI/cmnTb6b+UhpRSlGgVSzJoFkdAqcvzdtVJc3V9lChoBmgJaA9DCLtkHCPZI+q/lIaUUpRoFUsyaBZHQKnOKVuaWop1fZQoaAZoCWgPQwgD6s2o+arzv5SGlFKUaBVLMmgWR0Cpzc5cTrVwdX2UKGgGaAloD0MIOe//44QJ4r+UhpRSlGgVSzJoFkdAqc13HaN+9nV9lChoBmgJaA9DCF2Kq8q+K9a/lIaUUpRoFUsyaBZHQKnNGt1ZDAt1fZQoaAZoCWgPQwiwOnKkMzDWv5SGlFKUaBVLMmgWR0Cpz1xYaHbidX2UKGgGaAloD0MI6iKFsvD10r+UhpRSlGgVSzJoFkdAqc8BgTh5xHV9lChoBmgJaA9DCFMj9DP1ute/lIaUUpRoFUsyaBZHQKnOqj9GZu11fZQoaAZoCWgPQwiA7zZvnBTkv5SGlFKUaBVLMmgWR0Cpzk4EwFkhdX2UKGgGaAloD0MIBabTug0q8L+UhpRSlGgVSzJoFkdAqdCDxZuAJHV9lChoBmgJaA9DCCBDxw4qceS/lIaUUpRoFUsyaBZHQKnQKOyVv/B1fZQoaAZoCWgPQwjIC+nwEMb3v5SGlFKUaBVLMmgWR0Cpz9HDrJKbdX2UKGgGaAloD0MIDCO9qN3v9b+UhpRSlGgVSzJoFkdAqc91foicG3V9lChoBmgJaA9DCEpGzsKedt6/lIaUUpRoFUsyaBZHQKnRvKLbYbt1fZQoaAZoCWgPQwhse7slOWDov5SGlFKUaBVLMmgWR0Cp0WHWjGkvdX2UKGgGaAloD0MIAOXv3lFj57+UhpRSlGgVSzJoFkdAqdEKmhufmXV9lChoBmgJaA9DCM+kTdU9svK/lIaUUpRoFUsyaBZHQKnQrklNUOx1ZS4="
60
  },
61
  "ep_success_buffer": {
62
  ":type:": "<class 'collections.deque'>",
63
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
64
  },
65
+ "_n_updates": 50000,
66
  "n_steps": 5,
67
  "gamma": 0.99,
68
  "gae_lambda": 1.0,
a2c-PandaReachDense-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:24bad8123fa6534a4d6621bab834e9e87c20c91a2e69546f44bc501637e5fc7a
3
  size 44734
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:08c179b8a6410f6e40f3088c78b59c0d9cfe91fd93e5b96b30e3f63f1f954dcd
3
  size 44734
a2c-PandaReachDense-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:56ba172b4818f4446d33995e17ba36359905b0d2e9404d97c473abaa9ff14e21
3
  size 46014
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:db664b2cc63d4f803cdec6cac15770ffbdcc7d1f072afeb752b81ac6344e1e53
3
  size 46014
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fd78f9967a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fd78f991c40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684327104041118025, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAALAScPvrcir1SDHQ/LAScPvrcir1SDHQ/LAScPvrcir1SDHQ/LAScPvrcir1SDHQ/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAednHPwBwMD/koaO+XkZrv4bHlT3QD1w/kQPIP3TzGr5yCRo+kXNhvotI07+FCae/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAsBJw++tyKvVIMdD9nxnE9QEAfPEEGiD0sBJw++tyKvVIMdD9nxnE9QEAfPEEGiD0sBJw++tyKvVIMdD9nxnE9QEAfPEEGiD0sBJw++tyKvVIMdD9nxnE9QEAfPEEGiD2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.30471933 -0.06780429 0.953313 ]\n [ 0.30471933 -0.06780429 0.953313 ]\n [ 0.30471933 -0.06780429 0.953313 ]\n [ 0.30471933 -0.06780429 0.953313 ]]", "desired_goal": "[[ 1.5613242 0.689209 -0.3195945 ]\n [-0.91904247 0.07313447 0.8596163 ]\n [ 1.5626088 -0.15131932 0.15042666]\n [-0.22016741 -1.6506513 -1.304978 ]]", "observation": "[[ 0.30471933 -0.06780429 0.953313 0.0590271 0.00971991 0.06641818]\n [ 0.30471933 -0.06780429 0.953313 0.0590271 0.00971991 0.06641818]\n [ 0.30471933 -0.06780429 0.953313 0.0590271 0.00971991 0.06641818]\n [ 0.30471933 -0.06780429 0.953313 0.0590271 0.00971991 0.06641818]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAll+5PLZXqrwgPfA9x3K6u+F3BT7xjQk9zgR6PHBNJzyr/7A7XrLJvKSLfr0Z2ls+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.02262859 -0.02079378 0.11730409]\n [-0.00568995 0.13034011 0.03358263]\n [ 0.01525993 0.01021133 0.00540157]\n [-0.02462118 -0.06214489 0.21469916]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIdopVgzCHFMCUhpRSlIwBbJRLMowBdJRHQLXQmVo6CDp1fZQoaAZoCWgPQwh1rb1PVWEzwJSGlFKUaBVLMmgWR0C10HimqHXVdX2UKGgGaAloD0MIj1Tf+UXpGsCUhpRSlGgVSzJoFkdAtdBW7ZnL73V9lChoBmgJaA9DCKZFfZI7hCXAlIaUUpRoFUsyaBZHQLXQN8nNPgx1fZQoaAZoCWgPQwiBd/LpsY0bwJSGlFKUaBVLMmgWR0C10RzlLeyidX2UKGgGaAloD0MIaD18mSiqLcCUhpRSlGgVSzJoFkdAtdD7rxAjZHV9lChoBmgJaA9DCCbkg57Noi3AlIaUUpRoFUsyaBZHQLXQ2lyBCld1fZQoaAZoCWgPQwim0k84u7UcwJSGlFKUaBVLMmgWR0C10LsnJDE4dX2UKGgGaAloD0MImboru2D4K8CUhpRSlGgVSzJoFkdAtdGdFkQPJHV9lChoBmgJaA9DCHgMj/0sTiPAlIaUUpRoFUsyaBZHQLXRfIKtxMp1fZQoaAZoCWgPQwiifEELCZgiwJSGlFKUaBVLMmgWR0C10VqwMYuTdX2UKGgGaAloD0MIPkLNkCq6KcCUhpRSlGgVSzJoFkdAtdE74Ju2qnV9lChoBmgJaA9DCC3ovTEEICXAlIaUUpRoFUsyaBZHQLXSJyI55qx1fZQoaAZoCWgPQwjG4cyv5tglwJSGlFKUaBVLMmgWR0C10gYNRWLhdX2UKGgGaAloD0MIMUROX8+jMcCUhpRSlGgVSzJoFkdAtdHk2WIGhXV9lChoBmgJaA9DCD9uv3yycjHAlIaUUpRoFUsyaBZHQLXRxirDIil1fZQoaAZoCWgPQwgAjGfQ0BczwJSGlFKUaBVLMmgWR0C10qLEYO2BdX2UKGgGaAloD0MIJh5QNuUKGsCUhpRSlGgVSzJoFkdAtdKBuZThpHV9lChoBmgJaA9DCCXJc30f/ifAlIaUUpRoFUsyaBZHQLXSX+Cbtqp1fZQoaAZoCWgPQwjo+dNGdSojwJSGlFKUaBVLMmgWR0C10kCrgflqdX2UKGgGaAloD0MIdck4RrJTNMCUhpRSlGgVSzJoFkdAtdMnYL9deXV9lChoBmgJaA9DCJdvfVhvHCfAlIaUUpRoFUsyaBZHQLXTBqFAVwh1fZQoaAZoCWgPQwgyPWGJB8wpwJSGlFKUaBVLMmgWR0C10uTurp7kdX2UKGgGaAloD0MIcGByo8g+MsCUhpRSlGgVSzJoFkdAtdLGuieum3V9lChoBmgJaA9DCBwo8E4+jSjAlIaUUpRoFUsyaBZHQLXTnLsrupl1fZQoaAZoCWgPQwgwoBfuXGAlwJSGlFKUaBVLMmgWR0C103uQp4KQdX2UKGgGaAloD0MI61bPSe9LG8CUhpRSlGgVSzJoFkdAtdNZzDGcWnV9lChoBmgJaA9DCL+36c9+PCHAlIaUUpRoFUsyaBZHQLXTOrjHXEt1fZQoaAZoCWgPQwiWIY51cZ8ywJSGlFKUaBVLMmgWR0C11CVmvnr6dX2UKGgGaAloD0MIev1JfO6kIMCUhpRSlGgVSzJoFkdAtdQEVbiZOXV9lChoBmgJaA9DCFN5O8Jp+SXAlIaUUpRoFUsyaBZHQLXT4oUSIxh1fZQoaAZoCWgPQwhLWvENha8swJSGlFKUaBVLMmgWR0C108NYOlO5dX2UKGgGaAloD0MI0eY4twmTNMCUhpRSlGgVSzJoFkdAtdSkoa1kUnV9lChoBmgJaA9DCMIyNnSzdynAlIaUUpRoFUsyaBZHQLXUg4TK1Xx1fZQoaAZoCWgPQwiw5ZXrbS8xwJSGlFKUaBVLMmgWR0C11GIGY8dQdX2UKGgGaAloD0MIym37HvX3JcCUhpRSlGgVSzJoFkdAtdRCvs7dSHV9lChoBmgJaA9DCFuVRPZBSjHAlIaUUpRoFUsyaBZHQLXVLsV+I/J1fZQoaAZoCWgPQwifBDbn4AknwJSGlFKUaBVLMmgWR0C11Q2VNYbLdX2UKGgGaAloD0MIUitM32uYEMCUhpRSlGgVSzJoFkdAtdTr2alUInV9lChoBmgJaA9DCInUtItp3inAlIaUUpRoFUsyaBZHQLXUzRmK64F1fZQoaAZoCWgPQwjbwB2oU8YjwJSGlFKUaBVLMmgWR0C11bhoIv8JdX2UKGgGaAloD0MI4297gsQWMsCUhpRSlGgVSzJoFkdAtdWXvphWo3V9lChoBmgJaA9DCL6ItmPqRjDAlIaUUpRoFUsyaBZHQLXVdmoBJZp1fZQoaAZoCWgPQwitFthjIukwwJSGlFKUaBVLMmgWR0C11VciwB5pdX2UKGgGaAloD0MIV5QSglXVKMCUhpRSlGgVSzJoFkdAtdZA6QvHtHV9lChoBmgJaA9DCETDYtS1FjPAlIaUUpRoFUsyaBZHQLXWIEpRXOp1fZQoaAZoCWgPQwhGW5VE9uU0wJSGlFKUaBVLMmgWR0C11f8gMc6vdX2UKGgGaAloD0MISx3k9WDKJMCUhpRSlGgVSzJoFkdAtdXgGkep43V9lChoBmgJaA9DCNBgU+dRGSPAlIaUUpRoFUsyaBZHQLXW+aoMrmR1fZQoaAZoCWgPQwhUcHhBRAYywJSGlFKUaBVLMmgWR0C11tjABT4tdX2UKGgGaAloD0MIZ195kJ4yKMCUhpRSlGgVSzJoFkdAtda3LwF1S3V9lChoBmgJaA9DCFjFG5lHpjDAlIaUUpRoFUsyaBZHQLXWmVzp5eJ1fZQoaAZoCWgPQwizeofboWEnwJSGlFKUaBVLMmgWR0C117AAIY3vdX2UKGgGaAloD0MI66wW2GNuNcCUhpRSlGgVSzJoFkdAtdePGHYYi3V9lChoBmgJaA9DCBmMEYlCCxfAlIaUUpRoFUsyaBZHQLXXbcJdB0J1fZQoaAZoCWgPQwj9o2/SNHAlwJSGlFKUaBVLMmgWR0C1107y1/lRdX2UKGgGaAloD0MIb5upEI/kFsCUhpRSlGgVSzJoFkdAtdhuJTER8XV9lChoBmgJaA9DCIuKOJ1kIzTAlIaUUpRoFUsyaBZHQLXYTlMRHwx1fZQoaAZoCWgPQwgU0a+tnz4wwJSGlFKUaBVLMmgWR0C12Cy+HrQgdX2UKGgGaAloD0MIFM0DWORvJ8CUhpRSlGgVSzJoFkdAtdgNvegte3V9lChoBmgJaA9DCK/rF+yGPSLAlIaUUpRoFUsyaBZHQLXZU/etSyd1fZQoaAZoCWgPQwicMcwJ2sQawJSGlFKUaBVLMmgWR0C12TNRvWH2dX2UKGgGaAloD0MITPp7KTzwLsCUhpRSlGgVSzJoFkdAtdkR6+nIhnV9lChoBmgJaA9DCOTbuwZ9gTTAlIaUUpRoFUsyaBZHQLXY9FtbcGl1fZQoaAZoCWgPQwgvGFxzRw8pwJSGlFKUaBVLMmgWR0C12g4vSMLndX2UKGgGaAloD0MIqg1ORL+WMMCUhpRSlGgVSzJoFkdAtdntUwSJ0nV9lChoBmgJaA9DCC7lfLH32inAlIaUUpRoFUsyaBZHQLXZy8IAwPB1fZQoaAZoCWgPQwj3dktywNYpwJSGlFKUaBVLMmgWR0C12azAN5MUdX2UKGgGaAloD0MIcM/zp42SLcCUhpRSlGgVSzJoFkdAtdro+PikwnV9lChoBmgJaA9DCFQZxt0g2jTAlIaUUpRoFUsyaBZHQLXayNlRP451fZQoaAZoCWgPQwgtliL5Srg6wJSGlFKUaBVLMmgWR0C12qd0NjLCdX2UKGgGaAloD0MIEhJpG39iK8CUhpRSlGgVSzJoFkdAtdqIfT1CgXV9lChoBmgJaA9DCDYhrTHo3CbAlIaUUpRoFUsyaBZHQLXbuSPluFZ1fZQoaAZoCWgPQwjx1Y7iHDUtwJSGlFKUaBVLMmgWR0C125hD1GsndX2UKGgGaAloD0MIRIoBEk1ALMCUhpRSlGgVSzJoFkdAtdt2xHG0eHV9lChoBmgJaA9DCEsi+yDL8jTAlIaUUpRoFUsyaBZHQLXbWFJg9eR1fZQoaAZoCWgPQwjQ8GYN3ockwJSGlFKUaBVLMmgWR0C13EtDx9XtdX2UKGgGaAloD0MIg8E1d/TvGsCUhpRSlGgVSzJoFkdAtdwqS+xnnXV9lChoBmgJaA9DCHFa8KKvWCnAlIaUUpRoFUsyaBZHQLXcCJTER8N1fZQoaAZoCWgPQwhblNkgk2wswJSGlFKUaBVLMmgWR0C12+lNDc/MdX2UKGgGaAloD0MIU3qmlxjLG8CUhpRSlGgVSzJoFkdAtdzGAkLQX3V9lChoBmgJaA9DCJEJ+DWSRDLAlIaUUpRoFUsyaBZHQLXcpVf/m1Z1fZQoaAZoCWgPQwj3yVGAKPgpwJSGlFKUaBVLMmgWR0C13IOH8CPqdX2UKGgGaAloD0MIeAyP/Sw+IsCUhpRSlGgVSzJoFkdAtdxkSsbNr3V9lChoBmgJaA9DCMl2vp8azy7AlIaUUpRoFUsyaBZHQLXdOZflZHN1fZQoaAZoCWgPQwi5Nem2RIYkwJSGlFKUaBVLMmgWR0C13Rhun/DMdX2UKGgGaAloD0MIw9fXutTQKcCUhpRSlGgVSzJoFkdAtdz2pJf6XXV9lChoBmgJaA9DCIEKR5BKISfAlIaUUpRoFUsyaBZHQLXc11IiC8R1fZQoaAZoCWgPQwjKFkm70VcvwJSGlFKUaBVLMmgWR0C13cPYSQHSdX2UKGgGaAloD0MIgse3dw0qH8CUhpRSlGgVSzJoFkdAtd2jKmsNlXV9lChoBmgJaA9DCLKgMCjTIDDAlIaUUpRoFUsyaBZHQLXdgc6vJRx1fZQoaAZoCWgPQwhNaf0tAXguwJSGlFKUaBVLMmgWR0C13WKCYkVvdX2UKGgGaAloD0MIH/gYrDiNJcCUhpRSlGgVSzJoFkdAtd4+wFC9iHV9lChoBmgJaA9DCGx55XrbvBjAlIaUUpRoFUsyaBZHQLXeHdDpkf91fZQoaAZoCWgPQwg+z582qlsiwJSGlFKUaBVLMmgWR0C13fwgHNX6dX2UKGgGaAloD0MIuHTMecZWM8CUhpRSlGgVSzJoFkdAtd3dH7P6bnV9lChoBmgJaA9DCPzHQnQI/CfAlIaUUpRoFUsyaBZHQLXesKlpGnZ1fZQoaAZoCWgPQwhSnnk57GYxwJSGlFKUaBVLMmgWR0C13o+yiVSodX2UKGgGaAloD0MIw2LUtfa+KcCUhpRSlGgVSzJoFkdAtd5t3fQ8fXV9lChoBmgJaA9DCEhrDDohLCHAlIaUUpRoFUsyaBZHQLXeTpZfUnZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 100000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fb70e356a70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fb70e359880>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684397357494245643, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAWO/PPqoToTyIaA8/WO/PPqoToTyIaA8/WO/PPqoToTyIaA8/WO/PPqoToTyIaA8/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAxnVaP88sjL1W/J0/ZpQBvwRdaz8tMoE956CEP73OO78AcKo/ihuov7xxIz+Ybbe/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABY788+qhOhPIhoDz/8PSI8cnhTO02GB7tY788+qhOhPIhoDz/8PSI8cnhTO02GB7tY788+qhOhPIhoDz/8PSI8cnhTO02GB7tY788+qhOhPIhoDz/8PSI8cnhTO02GB7uUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.40612292 0.0196627 0.5601888 ]\n [0.40612292 0.0196627 0.5601888 ]\n [0.40612292 0.0196627 0.5601888 ]\n [0.40612292 0.0196627 0.5601888 ]]", "desired_goal": "[[ 0.8533596 -0.06844484 1.2342632 ]\n [-0.50617063 0.91938806 0.06308398]\n [ 1.0361603 -0.7336233 1.331543 ]\n [-1.3133404 0.6384542 -1.433032 ]]", "observation": "[[ 0.40612292 0.0196627 0.5601888 0.00990247 0.00322678 -0.00206794]\n [ 0.40612292 0.0196627 0.5601888 0.00990247 0.00322678 -0.00206794]\n [ 0.40612292 0.0196627 0.5601888 0.00990247 0.00322678 -0.00206794]\n [ 0.40612292 0.0196627 0.5601888 0.00990247 0.00322678 -0.00206794]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA1SQkvVZuhrtFnmE+FxIVPdcT073MLuI9xjSfPG5wvLzFva49QDKtPbIECT5u2BM+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.04007419 -0.00410251 0.22033031]\n [ 0.0363942 -0.10306519 0.11044082]\n [ 0.01943434 -0.02300283 0.08532289]\n [ 0.0845685 0.13380697 0.1443803 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIUBpqFJLM5b+UhpRSlIwBbJRLMowBdJRHQKmwcvM8ox51fZQoaAZoCWgPQwhxrmGGxhPvv5SGlFKUaBVLMmgWR0CpsBgvtdAxdX2UKGgGaAloD0MIca32sBcK5b+UhpRSlGgVSzJoFkdAqa/BBu4wy3V9lChoBmgJaA9DCAh0Jm2q7u6/lIaUUpRoFUsyaBZHQKmvZKlpGnZ1fZQoaAZoCWgPQwi+aI8X0uHTv5SGlFKUaBVLMmgWR0CpsbExyn1ndX2UKGgGaAloD0MILA/SU+QQ5b+UhpRSlGgVSzJoFkdAqbFWbAk9lnV9lChoBmgJaA9DCCUH7GrylOi/lIaUUpRoFUsyaBZHQKmw/zzVc2R1fZQoaAZoCWgPQwiBJsKGp1frv5SGlFKUaBVLMmgWR0CpsKONPxhEdX2UKGgGaAloD0MI0xIro5HP97+UhpRSlGgVSzJoFkdAqbNF/x2B8XV9lChoBmgJaA9DCAzLn28LFuy/lIaUUpRoFUsyaBZHQKmy7C/oJRh1fZQoaAZoCWgPQwjTakjcY2niv5SGlFKUaBVLMmgWR0CpspXmNipedX2UKGgGaAloD0MIVtehmpKs3r+UhpRSlGgVSzJoFkdAqbI6mEXcg3V9lChoBmgJaA9DCOGVJM/1/eq/lIaUUpRoFUsyaBZHQKm1L2V3Ux51fZQoaAZoCWgPQwhf7pOjANHsv5SGlFKUaBVLMmgWR0CptNUfPompdX2UKGgGaAloD0MI8u8zLhyI67+UhpRSlGgVSzJoFkdAqbR+0iQkonV9lChoBmgJaA9DCFLt0/GYgeC/lIaUUpRoFUsyaBZHQKm0I1y/9Hd1fZQoaAZoCWgPQwgpyxDHurjxv5SGlFKUaBVLMmgWR0CptyR8UmD2dX2UKGgGaAloD0MIaTo7GRwl6L+UhpRSlGgVSzJoFkdAqbbK1gH/tXV9lChoBmgJaA9DCFJ/vcKC++q/lIaUUpRoFUsyaBZHQKm2dLpzLfV1fZQoaAZoCWgPQwhY4gFlU67rv5SGlFKUaBVLMmgWR0CpthleWv8qdX2UKGgGaAloD0MIyQT8GknC8L+UhpRSlGgVSzJoFkdAqblE98qnWXV9lChoBmgJaA9DCPp6vma57Pi/lIaUUpRoFUsyaBZHQKm46zUqhDh1fZQoaAZoCWgPQwiJCP8iaMzuv5SGlFKUaBVLMmgWR0CpuJUPH1e0dX2UKGgGaAloD0MIy9qmeFxU57+UhpRSlGgVSzJoFkdAqbg56IFeOXV9lChoBmgJaA9DCBuBeF2/IPS/lIaUUpRoFUsyaBZHQKm7SxrzoU11fZQoaAZoCWgPQwjxm8JKBRXev5SGlFKUaBVLMmgWR0CpuvEtNBWxdX2UKGgGaAloD0MIzm+YaJBC8L+UhpRSlGgVSzJoFkdAqbqa2KEWZnV9lChoBmgJaA9DCJbRyOcVz++/lIaUUpRoFUsyaBZHQKm6P3NcGC91fZQoaAZoCWgPQwhqa0QwDq7kv5SGlFKUaBVLMmgWR0CpvYUQTVUddX2UKGgGaAloD0MIyRzLu+rB8b+UhpRSlGgVSzJoFkdAqb0resPrfXV9lChoBmgJaA9DCGCuRQvQtuu/lIaUUpRoFUsyaBZHQKm81rgwXZZ1fZQoaAZoCWgPQwiIvruVJTrpv5SGlFKUaBVLMmgWR0CpvHtkvsZ6dX2UKGgGaAloD0MIeouH9xxY5b+UhpRSlGgVSzJoFkdAqb7rCtRvWHV9lChoBmgJaA9DCFyv6UFBKea/lIaUUpRoFUsyaBZHQKm+kB2fTTh1fZQoaAZoCWgPQwh+N92yQ3zlv5SGlFKUaBVLMmgWR0Cpvji/XXiBdX2UKGgGaAloD0MI/oAHBhA+4L+UhpRSlGgVSzJoFkdAqb3ccsDnvHV9lChoBmgJaA9DCPlqR3GOuu6/lIaUUpRoFUsyaBZHQKnAFS619fF1fZQoaAZoCWgPQwjWG7XC9L3Zv5SGlFKUaBVLMmgWR0Cpv7phfBvadX2UKGgGaAloD0MIWVLuPsdH27+UhpRSlGgVSzJoFkdAqb9jOJLuhXV9lChoBmgJaA9DCNOkFHR7Sde/lIaUUpRoFUsyaBZHQKm/Bvrnkkt1fZQoaAZoCWgPQwhMa9PYXovvv5SGlFKUaBVLMmgWR0CpwUDcdo38dX2UKGgGaAloD0MI9pUH6Sly47+UhpRSlGgVSzJoFkdAqcDl8/lhgHV9lChoBmgJaA9DCAJFLGLY4fS/lIaUUpRoFUsyaBZHQKnAjsC1Z1V1fZQoaAZoCWgPQwjBcoQM5Nnfv5SGlFKUaBVLMmgWR0CpwDJ8OTaCdX2UKGgGaAloD0MI5KJaRBQT5b+UhpRSlGgVSzJoFkdAqcJsSPEKmnV9lChoBmgJaA9DCACo4sYt5uS/lIaUUpRoFUsyaBZHQKnCEXfIjnp1fZQoaAZoCWgPQwj8OQX52cjuv5SGlFKUaBVLMmgWR0CpwbpQ+EAYdX2UKGgGaAloD0MI3ze+9swS5b+UhpRSlGgVSzJoFkdAqcFeB+Wnj3V9lChoBmgJaA9DCNWXpZ2ay+6/lIaUUpRoFUsyaBZHQKnDlQrtmcx1fZQoaAZoCWgPQwjNkgA1tWzwv5SGlFKUaBVLMmgWR0CpwzoatLcsdX2UKGgGaAloD0MIrHMMyF7v67+UhpRSlGgVSzJoFkdAqcLizollb3V9lChoBmgJaA9DCGmqJ/OPvuy/lIaUUpRoFUsyaBZHQKnChot+TeR1fZQoaAZoCWgPQwhZh6OrdPfvv5SGlFKUaBVLMmgWR0CpxLIMSbpedX2UKGgGaAloD0MIbxKDwMoh7r+UhpRSlGgVSzJoFkdAqcRXPC2tuHV9lChoBmgJaA9DCCHqPgCpTei/lIaUUpRoFUsyaBZHQKnEABdUsFt1fZQoaAZoCWgPQwhhN2xblNngv5SGlFKUaBVLMmgWR0Cpw6PcJtzkdX2UKGgGaAloD0MI8Bge+1ksz7+UhpRSlGgVSzJoFkdAqcXkF2V3U3V9lChoBmgJaA9DCFsLs9DO6eC/lIaUUpRoFUsyaBZHQKnFiWNWEK51fZQoaAZoCWgPQwiZoIZvYd3Tv5SGlFKUaBVLMmgWR0CpxTJ1q33IdX2UKGgGaAloD0MIGvz9Yrak8b+UhpRSlGgVSzJoFkdAqcTWIuXeFnV9lChoBmgJaA9DCPfJUYAoGOq/lIaUUpRoFUsyaBZHQKnHFP/rB0p1fZQoaAZoCWgPQwgVHcnlPyTkv5SGlFKUaBVLMmgWR0Cpxro+W4VidX2UKGgGaAloD0MIx0yiXvDp7r+UhpRSlGgVSzJoFkdAqcZjGWD6FnV9lChoBmgJaA9DCCEBo8ubw/K/lIaUUpRoFUsyaBZHQKnGBtlZowp1fZQoaAZoCWgPQwjfv3lx4qvtv5SGlFKUaBVLMmgWR0CpyERFy7wsdX2UKGgGaAloD0MI/dzQlJ1+5b+UhpRSlGgVSzJoFkdAqcfpqwhW53V9lChoBmgJaA9DCAwG19zRv/K/lIaUUpRoFUsyaBZHQKnHkoegctJ1fZQoaAZoCWgPQwgqV3iXizj0v5SGlFKUaBVLMmgWR0CpxzYtHxz8dX2UKGgGaAloD0MImdNlMbG58L+UhpRSlGgVSzJoFkdAqclyowVTJnV9lChoBmgJaA9DCNs2jILg8em/lIaUUpRoFUsyaBZHQKnJF+ocaOx1fZQoaAZoCWgPQwif6Lrwg3Plv5SGlFKUaBVLMmgWR0CpyMDOC5EudX2UKGgGaAloD0MIj20ZcJYS6r+UhpRSlGgVSzJoFkdAqchkhRqGlHV9lChoBmgJaA9DCPKVQErs2uy/lIaUUpRoFUsyaBZHQKnKnXp4bCJ1fZQoaAZoCWgPQwiIK2fvjPbyv5SGlFKUaBVLMmgWR0CpykKpkwvhdX2UKGgGaAloD0MIxXB1AMRd77+UhpRSlGgVSzJoFkdAqcnrhm5DqnV9lChoBmgJaA9DCJqxaDo7Gee/lIaUUpRoFUsyaBZHQKnJjz4k/r11fZQoaAZoCWgPQwjA0CNGz+3wv5SGlFKUaBVLMmgWR0Cpy8snAqNIdX2UKGgGaAloD0MIdJoF2h1S7r+UhpRSlGgVSzJoFkdAqctwREnb7HV9lChoBmgJaA9DCHeiJCTStu2/lIaUUpRoFUsyaBZHQKnLGQXhwVF1fZQoaAZoCWgPQwhqGD4ipkTxv5SGlFKUaBVLMmgWR0CpyryuyNXHdX2UKGgGaAloD0MI7bd2oiTk8r+UhpRSlGgVSzJoFkdAqc0BYPoV23V9lChoBmgJaA9DCBKDwMqhRd+/lIaUUpRoFUsyaBZHQKnMpnV5KOF1fZQoaAZoCWgPQwgg8SvWcFHxv5SGlFKUaBVLMmgWR0CpzE+xnnMddX2UKGgGaAloD0MIuI/cmnTb6b+UhpRSlGgVSzJoFkdAqcvzdtVJc3V9lChoBmgJaA9DCLtkHCPZI+q/lIaUUpRoFUsyaBZHQKnOKVuaWop1fZQoaAZoCWgPQwgD6s2o+arzv5SGlFKUaBVLMmgWR0Cpzc5cTrVwdX2UKGgGaAloD0MIOe//44QJ4r+UhpRSlGgVSzJoFkdAqc13HaN+9nV9lChoBmgJaA9DCF2Kq8q+K9a/lIaUUpRoFUsyaBZHQKnNGt1ZDAt1fZQoaAZoCWgPQwiwOnKkMzDWv5SGlFKUaBVLMmgWR0Cpz1xYaHbidX2UKGgGaAloD0MI6iKFsvD10r+UhpRSlGgVSzJoFkdAqc8BgTh5xHV9lChoBmgJaA9DCFMj9DP1ute/lIaUUpRoFUsyaBZHQKnOqj9GZu11fZQoaAZoCWgPQwiA7zZvnBTkv5SGlFKUaBVLMmgWR0Cpzk4EwFkhdX2UKGgGaAloD0MIBabTug0q8L+UhpRSlGgVSzJoFkdAqdCDxZuAJHV9lChoBmgJaA9DCCBDxw4qceS/lIaUUpRoFUsyaBZHQKnQKOyVv/B1fZQoaAZoCWgPQwjIC+nwEMb3v5SGlFKUaBVLMmgWR0Cpz9HDrJKbdX2UKGgGaAloD0MIDCO9qN3v9b+UhpRSlGgVSzJoFkdAqc91foicG3V9lChoBmgJaA9DCEpGzsKedt6/lIaUUpRoFUsyaBZHQKnRvKLbYbt1fZQoaAZoCWgPQwhse7slOWDov5SGlFKUaBVLMmgWR0Cp0WHWjGkvdX2UKGgGaAloD0MIAOXv3lFj57+UhpRSlGgVSzJoFkdAqdEKmhufmXV9lChoBmgJaA9DCM+kTdU9svK/lIaUUpRoFUsyaBZHQKnQrklNUOx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": -12.113418979197741, "std_reward": 4.881126688109332, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-17T14:12:18.428332"}
 
1
+ {"mean_reward": -0.6262243398814462, "std_reward": 0.1632794628469352, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-18T09:04:27.839633"}
vec_normalize.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:c57a34bd07f9477904b3610c46484b721ff7cf9a0291d1be1b7fc1220d834934
3
  size 2387
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5c3e44dcf7c90bfffb41b259a4489025c94e106f989d985b5d0771aaf9c8274c
3
  size 2387