STATIKwitak
commited on
Fix
Browse files- scripts/deepseek_slice.py +3 -173
scripts/deepseek_slice.py
CHANGED
@@ -1,173 +1,3 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
import os
|
5 |
-
from pathlib import Path
|
6 |
-
import json
|
7 |
-
import re
|
8 |
-
|
9 |
-
model_dir_name = "DeepSeek-V3-bf16"
|
10 |
-
model_dir_path = Path(model_dir_name)
|
11 |
-
|
12 |
-
output_dir_name = "DeepSeek-V3-slice"
|
13 |
-
output_dir_path = Path(output_dir_name)
|
14 |
-
os.makedirs(output_dir_name, exist_ok=True)
|
15 |
-
|
16 |
-
try:
|
17 |
-
tensor_map_json = json.load(open(model_dir_path / "model.safetensors.index.json"))
|
18 |
-
weight_map = tensor_map_json["weight_map"]
|
19 |
-
except FileNotFoundError:
|
20 |
-
print("モデルのインデックスファイルが見つかりません")
|
21 |
-
raise
|
22 |
-
|
23 |
-
tensor_files = list(set(weight_map.values()))
|
24 |
-
tensor_files.sort()
|
25 |
-
print(f"変換対象のファイル数: {len(tensor_files)}")
|
26 |
-
|
27 |
-
try:
|
28 |
-
config_json = json.load(open(model_dir_path / "config.json"))
|
29 |
-
except FileNotFoundError:
|
30 |
-
print("モデルの設定ファイルが見つかりません")
|
31 |
-
raise
|
32 |
-
|
33 |
-
# experts
|
34 |
-
n_routed_experts = int(config_json["n_routed_experts"])
|
35 |
-
|
36 |
-
# layers
|
37 |
-
num_hidden_layers = int(config_json["num_hidden_layers"])
|
38 |
-
|
39 |
-
# active experts
|
40 |
-
num_experts_per_tok = int(config_json["num_experts_per_tok"])
|
41 |
-
|
42 |
-
# このlayer-idxからdenseレイヤーをMoEにする
|
43 |
-
first_k_dense_replace = int(config_json["first_k_dense_replace"])
|
44 |
-
|
45 |
-
converted_tensors_size = 0
|
46 |
-
|
47 |
-
target_n_routed_experts = 64
|
48 |
-
|
49 |
-
|
50 |
-
def print_tensor_info(tensor, key, new_key=None):
|
51 |
-
print(f"key: {key} to {new_key if new_key else key}, shape: {tensor.shape}, size: {tensor.numel() * tensor.element_size() } Byte")
|
52 |
-
|
53 |
-
def ensure_tensor_has_data(tensor):
|
54 |
-
try:
|
55 |
-
# テンソルが実際にアクセス可能かテスト
|
56 |
-
tensor[0]
|
57 |
-
return tensor
|
58 |
-
except Exception as e:
|
59 |
-
print(f"テンソルの再構築が必要: {e}")
|
60 |
-
# テンソルを明示的に再構築
|
61 |
-
return torch.tensor(tensor.cpu().numpy(), dtype=tensor.dtype)
|
62 |
-
|
63 |
-
with open("layer_topk_idx_distribution.json", "r") as f:
|
64 |
-
layer_topk_idx_distribution = json.load(f)
|
65 |
-
|
66 |
-
|
67 |
-
for i, tensor_file_name in enumerate(tensor_files, 1):
|
68 |
-
print(f"\n処理中: {tensor_file_name} ({i}/{len(tensor_files)})")
|
69 |
-
|
70 |
-
tensor_path = model_dir_path / tensor_file_name
|
71 |
-
tensor_data = safe_open(tensor_path, framework="pt")
|
72 |
-
converted_tensors = {}
|
73 |
-
|
74 |
-
for key in tensor_data.keys():
|
75 |
-
tensor = tensor_data.get_tensor(key)
|
76 |
-
tensor = ensure_tensor_has_data(tensor) # テンソルの実データを確保
|
77 |
-
|
78 |
-
# レイヤーidxを取得 model.layers.0.から数値 ない場合もある
|
79 |
-
layer_idx = int(re.search(r'model\.layers\.(\d+)\.', key).group(1)) if re.search(r'model\.layers\.(\d+)\.', key) else -1
|
80 |
-
|
81 |
-
# レイヤーidxがない場合はそのまま保存
|
82 |
-
if layer_idx < first_k_dense_replace:
|
83 |
-
converted_tensors[key] = tensor.clone()
|
84 |
-
converted_tensors_size += tensor.numel() * tensor.element_size()
|
85 |
-
print_tensor_info(tensor, key, key)
|
86 |
-
continue
|
87 |
-
|
88 |
-
if layer_idx >= num_hidden_layers:
|
89 |
-
del tensor_map_json["weight_map"][key]
|
90 |
-
continue
|
91 |
-
|
92 |
-
# layer_topk_idx_distribution から当該レイヤーで使いたい experts idx を取得
|
93 |
-
if str(layer_idx) in layer_topk_idx_distribution:
|
94 |
-
experts_list = layer_topk_idx_distribution[str(layer_idx)]["experts"][:target_n_routed_experts]
|
95 |
-
else:
|
96 |
-
step = n_routed_experts // target_n_routed_experts
|
97 |
-
experts_list = list(range(0, n_routed_experts, step))[:target_n_routed_experts]
|
98 |
-
experts_list.sort()
|
99 |
-
experts_tensor = torch.tensor(experts_list, dtype=torch.long, device=tensor.device)
|
100 |
-
|
101 |
-
# experts
|
102 |
-
if ".mlp.experts." in key:
|
103 |
-
experts_idx = int(re.search(r'\.mlp\.experts\.(\d+)\.', key).group(1))
|
104 |
-
if experts_idx in experts_list:
|
105 |
-
new_key = key.replace(f".mlp.experts.{experts_idx}.", f".mlp.experts.{experts_list.index(experts_idx)}.")
|
106 |
-
converted_tensors[new_key] = tensor.clone()
|
107 |
-
converted_tensors_size += tensor.numel() * tensor.element_size()
|
108 |
-
print_tensor_info(tensor, key, new_key)
|
109 |
-
tensor_map_json["weight_map"][new_key] = tensor_file_name
|
110 |
-
else:
|
111 |
-
print(f"skip experts: {key}")
|
112 |
-
continue
|
113 |
-
|
114 |
-
# shared-experts
|
115 |
-
if ".mlp.shared_experts." in key:
|
116 |
-
# shared-expertsを保存
|
117 |
-
converted_tensors[key] = tensor.clone()
|
118 |
-
converted_tensors_size += tensor.numel() * tensor.element_size()
|
119 |
-
print_tensor_info(tensor, key, key)
|
120 |
-
continue
|
121 |
-
|
122 |
-
if ".mlp.gate.e_score_correction_bias" in key:
|
123 |
-
# Tensor [256]を [target_n_routed_experts]に変換
|
124 |
-
squeezed_tensor = tensor[experts_tensor].clone()
|
125 |
-
converted_tensors[key] = squeezed_tensor
|
126 |
-
converted_tensors_size += squeezed_tensor.numel() * squeezed_tensor.element_size()
|
127 |
-
print_tensor_info(squeezed_tensor, key, key)
|
128 |
-
continue
|
129 |
-
|
130 |
-
if ".mlp.gate.weight" in key:
|
131 |
-
# Tensor [256, 7168]を [target_n_routed_experts, 7168]に変換
|
132 |
-
squeezed_tensor = tensor[experts_tensor, :].clone()
|
133 |
-
converted_tensors[key] = squeezed_tensor
|
134 |
-
converted_tensors_size += squeezed_tensor.numel() * squeezed_tensor.element_size()
|
135 |
-
print_tensor_info(squeezed_tensor, key, key)
|
136 |
-
continue
|
137 |
-
|
138 |
-
converted_tensors[key] = tensor.clone()
|
139 |
-
converted_tensors_size += tensor.numel() * tensor.element_size()
|
140 |
-
print_tensor_info(tensor, key, key)
|
141 |
-
|
142 |
-
save_file(converted_tensors, output_dir_path / tensor_file_name, metadata={"format": "pt"})
|
143 |
-
|
144 |
-
print(f"\n変換完了!")
|
145 |
-
print(f"合計サイズ: {converted_tensors_size / (1024**3):.2f} GB")
|
146 |
-
|
147 |
-
# model.safetensors.index.json
|
148 |
-
|
149 |
-
old_keys = list(tensor_map_json["weight_map"].keys())
|
150 |
-
for key in old_keys:
|
151 |
-
if ".mlp.experts." in key:
|
152 |
-
experts_idx = int(re.search(r'\.mlp\.experts\.(\d+)\.', key).group(1))
|
153 |
-
if experts_idx >= target_n_routed_experts:
|
154 |
-
del tensor_map_json["weight_map"][key]
|
155 |
-
|
156 |
-
|
157 |
-
tensor_map_json["metadata"]["total_size"] = converted_tensors_size
|
158 |
-
with open(output_dir_path / "model.safetensors.index.json", "w") as f:
|
159 |
-
json.dump(tensor_map_json, f, indent=4)
|
160 |
-
|
161 |
-
# config.json
|
162 |
-
output_config_json = config_json.copy()
|
163 |
-
output_config_json["n_routed_experts"] = target_n_routed_experts
|
164 |
-
# output_config_json["num_hidden_layers"] = num_hidden_layers
|
165 |
-
output_config_json["num_experts_per_tok"] = 4
|
166 |
-
# output_config_json["first_k_dense_replace"] = first_k_dense_replace
|
167 |
-
# output_config_json["n_shared_experts"] = n_shared_experts
|
168 |
-
# output_config_json["topk_group"] = topk_group
|
169 |
-
# output_config_json["n_group"] = n_group
|
170 |
-
|
171 |
-
|
172 |
-
with open(output_dir_path / "config.json", "w") as f:
|
173 |
-
json.dump(output_config_json, f, indent=4)
|
|
|
1 |
+
\[
|
2 |
+
R = P \land Q \land C
|
3 |
+
\]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|