Upload 6 files
Browse files- README.md +31 -0
- config.json +20 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +1 -0
- tokenizer.json +0 -0
- tokenizer_config.json +4 -0
README.md
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# SOBertLarge
|
2 |
+
|
3 |
+
## Model Description
|
4 |
+
|
5 |
+
SOBertBase is a 762M parameter BERT models trained on 27 billion tokens of SO data StackOverflow answer and comment text using the Megatron Toolkit.
|
6 |
+
|
7 |
+
SOBert is pre-trained with 19 GB data presented as 15 million samples where each sample contains an entire post and all its corresponding comments. We also include
|
8 |
+
all code in each answer so that our model is bimodal in nature. We use a SentencePiece tokenizer trained with BytePair Encoding, which has the benefit over WordPiece of never labeling tokens as “unknown".
|
9 |
+
Additionally, SOBert is trained with a a maximum sequence length of 2048 based on the empirical length distribution of StackOverflow posts and a relatively
|
10 |
+
large batch size of 0.5M tokens. A smaller 109 million parameter model can also be found [here](https://huggingface.co/mmukh/SOBertBase) . More details can be found in the paper
|
11 |
+
[Stack Over-Flowing with Results: The Case for Domain-Specific Pre-Training Over One-Size-Fits-All Models](https://arxiv.org/pdf/2306.03268).
|
12 |
+
|
13 |
+
#### How to use
|
14 |
+
|
15 |
+
```python
|
16 |
+
from transformers import AutoTokenizer,AutoModel
|
17 |
+
model = AutoModel.from_pretrained(mmukh/SOBertLarge")
|
18 |
+
tokenizer = AutoTokenizer.from_pretrained("mmukh/SOBertLarge")
|
19 |
+
|
20 |
+
```
|
21 |
+
|
22 |
+
### BibTeX entry and citation info
|
23 |
+
|
24 |
+
```bibtex
|
25 |
+
@article{mukherjee2023stack,
|
26 |
+
title={Stack Over-Flowing with Results: The Case for Domain-Specific Pre-Training Over One-Size-Fits-All Models},
|
27 |
+
author={Mukherjee, Manisha and Hellendoorn, Vincent J},
|
28 |
+
journal={arXiv preprint arXiv:2306.03268},
|
29 |
+
year={2023}
|
30 |
+
}
|
31 |
+
```
|
config.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"attention_probs_dropout_prob": 0.1,
|
3 |
+
"hidden_act": "gelu",
|
4 |
+
"hidden_dropout_prob": 0.1,
|
5 |
+
"hidden_size": 1536,
|
6 |
+
"initializer_range": 0.02,
|
7 |
+
"intermediate_size": 6144,
|
8 |
+
"layer_norm_eps": 1e-12,
|
9 |
+
"max_position_embeddings": 2048,
|
10 |
+
"model_type": "megatron-bert",
|
11 |
+
"num_attention_heads": 16,
|
12 |
+
"num_hidden_layers": 24,
|
13 |
+
"pad_token_id": 0,
|
14 |
+
"position_embedding_type": "absolute",
|
15 |
+
"tokenizer_type": "SentencePieceTokenizer",
|
16 |
+
"transformers_version": "4.31.0",
|
17 |
+
"type_vocab_size": 2,
|
18 |
+
"use_cache": true,
|
19 |
+
"vocab_size": 50048
|
20 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f9478715f1eb7f048c6d9f29a04eb4dafd543553b1102a3be1155aab4513cb52
|
3 |
+
size 1524894129
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"model_max_length": 2048,
|
3 |
+
"tokenizer_class": "PreTrainedTokenizerFast"
|
4 |
+
}
|