inctraining5 / README.md
mn720's picture
End of training
1494405 verified
|
raw
history blame
2.35 kB
---
language:
- sw
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_15_0
metrics:
- wer
model-index:
- name: Incremental Swahili Luganda
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Mix data
type: mozilla-foundation/common_voice_15_0
config: lg
split: validation
args: 'config: lu, split: test'
metrics:
- name: Wer
type: wer
value: 30.788572877488065
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Incremental Swahili Luganda
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Mix data dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3451
- Wer: 30.7886
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:-------:|
| 0.1438 | 0.1129 | 500 | 0.3669 | 32.7896 |
| 0.154 | 0.2258 | 1000 | 0.3710 | 32.7262 |
| 0.1482 | 0.3388 | 1500 | 0.3663 | 33.0875 |
| 0.1383 | 0.4517 | 2000 | 0.3626 | 32.0173 |
| 0.1513 | 0.5646 | 2500 | 0.3559 | 32.4166 |
| 0.1387 | 0.6775 | 3000 | 0.3514 | 30.9249 |
| 0.1407 | 0.7904 | 3500 | 0.3479 | 30.8963 |
| 0.1353 | 0.9033 | 4000 | 0.3451 | 30.7886 |
### Framework versions
- Transformers 4.40.0
- Pytorch 2.2.2+cu118
- Datasets 2.19.0
- Tokenizers 0.19.1