File size: 24,049 Bytes
1904ee8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
from dataclasses import asdict, dataclass, field
from typing import Dict, List, Literal, Optional

import torch
from accelerate import Accelerator
from callbacks import GoldModelRewardCallback, PerplexityCallback, PerplexityGenCallback
from datasets import builder, concatenate_datasets, load_dataset
from peft import AutoPeftModelForCausalLM, LoraConfig, PeftConfig, get_peft_model, prepare_model_for_kbit_training
from scalar_rm_model import ScalarModel
from transformers import (
    AutoModelForCausalLM,
    AutoModelForSequenceClassification,
    AutoTokenizer,
    BitsAndBytesConfig,
    GenerationConfig,
    HfArgumentParser,
    TrainerCallback,
    TrainingArguments,
)
from transformers.trainer_utils import get_last_checkpoint

import wandb
from trl import DPOTrainer


builder.has_sufficient_disk_space = lambda needed_bytes, directory=".": True


# Define and parse arguments.
@dataclass
class ScriptArguments:
    """
    The arguments for the DPO training script.
    """

    # data parameters
    dataset_name: Optional[str] = field(
        default="mnoukhov/openai_summarize_comparisons_tldrprompt_relabel1b", metadata={"help": "the dataset name"}
    )
    train_split: Optional[str] = field(default="train", metadata={"help": "the dataset split to train on"})
    eval_split: Optional[str] = field(
        default="test", metadata={"help": "the dataset split to evaluate on; default to 'none' (no evaluation)"}
    )
    beta: Optional[float] = field(default=0.1, metadata={"help": "the beta parameter for DPO loss"})

    pseudo_dataset_name: Optional[str] = field(default=None, metadata={"help": "the dataset name"})
    pseudo_dataset_split: Optional[str] = field(default="train", metadata={"help": "the dataset name"})
    prompt_field: Optional[str] = field(default="prompt")

    # model parameters
    model_name: Optional[str] = field(default="gpt2", metadata={"help": "the model name"})
    model_revision: Optional[str] = field(default=None, metadata={"help": "the model name"})
    ref_model_name: Optional[str] = field(default="gpt2", metadata={"help": "the model name"})
    ref_model_revision: Optional[str] = field(default=None, metadata={"help": "the model name"})
    tokenizer_name: Optional[str] = field(default=None, metadata={"help": "the model name"})
    bf16: Optional[bool] = field(
        default=False,
        metadata={
            "help": "This essentially cuts the training time in half if you want to sacrifice a little precision and have a supported GPU."
        },
    )
    fp16_model: Optional[bool] = field(
        default=False,
        metadata={
            "help": "This essentially cuts the training time in half if you want to sacrifice a little precision and have a supported GPU."
        },
    )
    fp16: Optional[bool] = field(
        default=False,
        metadata={
            "help": "This essentially cuts the training time in half if you want to sacrifice a little precision and have a supported GPU."
        },
    )
    load_in_8bit: Optional[bool] = field(default=False, metadata={"help": "load the model in 8 bits precision"})
    load_in_4bit: Optional[bool] = field(default=False, metadata={"help": "load the model in 4 bits precision"})
    use_peft: Optional[bool] = field(default=True, metadata={"help": "Wether to use PEFT or not to train adapters"})
    lora_alpha: Optional[float] = field(default=16, metadata={"help": "the lora alpha parameter"})
    lora_dropout: Optional[float] = field(default=0.05, metadata={"help": "the lora dropout parameter"})
    lora_r: Optional[int] = field(default=8, metadata={"help": "the lora r parameter"})

    # training parameters
    optimizer_type: Optional[str] = field(default="adamw_torch", metadata={"help": "the optimizer type"})
    warmup_steps: Optional[int] = field(default=150)
    learning_rate: Optional[float] = field(default=1e-3, metadata={"help": "optimizer learning rate"})
    lr_scheduler_type: Optional[str] = field(default="linear")
    per_device_train_batch_size: Optional[int] = field(default=4, metadata={"help": "batch size per device"})
    per_device_eval_batch_size: Optional[int] = field(default=8, metadata={"help": "batch size per device"})
    gradient_accumulation_steps: Optional[int] = field(
        default=1, metadata={"help": "the number of gradient accumulation steps"}
    )
    max_length: Optional[int] = field(default=560, metadata={"help": "max length of each sample"})
    max_prompt_length: Optional[int] = field(default=512, metadata={"help": "max length of each sample's prompt"})
    max_target_length: Optional[int] = field(
        default=48, metadata={"help": "Only used for encoder decoder model. Max target of each sample's prompt"}
    )
    num_train_epochs: Optional[int] = field(default=1, metadata={"help": "the number of training epochs"})
    max_steps: Optional[int] = field(default=-1)
    gradient_checkpointing: Optional[bool] = field(
        default=False, metadata={"help": "whether to use gradient checkpointing"}
    )

    # instrumentation
    seed: Optional[int] = field(default=0)
    output_dir: Optional[str] = field(default="results", metadata={"help": "the output directory"})
    logging_steps: Optional[int] = field(default=100, metadata={"help": "the number of update steps between two logs"})
    log_n_samples_during_eval: Optional[int] = field(default=100)
    eval_steps: Optional[float] = field(default=None, metadata={"help": "the number of steps to eval at"})
    save_steps: Optional[float] = field(default=1000, metadata={"help": "the number of steps to save at"})
    save_strategy: Optional[str] = field(default="steps")
    report_to: Optional[str] = field(
        default="wandb",
        metadata={
            "help": 'The list of integrations to report the results and logs to. Supported platforms are `"azure_ml"`,'
            '`"comet_ml"`, `"mlflow"`, `"neptune"`, `"tensorboard"`,`"clearml"` and `"wandb"`. '
            'Use `"all"` to report to all integrations installed, `"none"` for no integrations.'
        },
    )
    # debug argument for distributed training
    ignore_bias_buffers: Optional[bool] = field(
        default=False,
        metadata={
            "help": "fix for DDP issues with LM bias/mask buffers - invalid scalar type,`inplace operation. See"
            "https://github.com/huggingface/transformers/issues/22482#issuecomment-1595790992"
        },
    )
    push_to_hub: Optional[bool] = field(default=False)
    push_to_hub_organization: Optional[str] = field(default=None)

    # gold model
    gold_eval: Literal["full", "gen", "ppl", "none"] = field(default="full")
    gold_model_name: str = field(default=None, metadata={"help": "the gold reward model name"})
    gold_model_revision: Optional[str] = field(default=None, metadata={"help": "the model name"})
    gold_in_8bit: Optional[bool] = field(default=False, metadata={"help": "gold the model in 8 bits precision"})
    gold_in_4bit: Optional[bool] = field(default=False, metadata={"help": "gold the model in 4 bits precision"})
    gold_bf16: Optional[bool] = field(
        default=False,
    )
    gold_fp16: Optional[bool] = field(
        default=False,
    )
    generate_greedy: Optional[bool] = field(default=True)
    gold_dataset_name: Optional[str] = field(
        default="CarperAI/openai_summarize_tldr", metadata={"help": "the dataset name"}
    )
    gold_eval_split: Optional[str] = field(default="valid")
    gold_prompt_field: Optional[str] = field(default="prompt")
    gold_target_field: Optional[str] = field(default="label")
    gold_load_and_unload: Optional[str] = field(default=False)
    mode: Literal["train", "eval", "predict", "relabel"] = field(default="train")
    eval_first_step: Optional[bool] = field(default=True)
    strip_prompt: Optional[bool] = field(default=True)


def create_and_prepare_model(args):
    if args.load_in_8bit and args.load_in_4bit:
        raise ValueError("You can't load the model in 8 bits and 4 bits at the same time")
    elif args.load_in_8bit or args.load_in_4bit:
        quantization_config = BitsAndBytesConfig(load_in_8bit=args.load_in_8bit, load_in_4bit=args.load_in_4bit)
        device_map = {"": Accelerator().local_process_index}
    else:
        device_map = None
        quantization_config = None

    if args.bf16:
        dtype = torch.bfloat16
    elif args.fp16_model:
        dtype = torch.float16
    else:
        dtype = torch.float32

    tokenizer_name = args.tokenizer_name

    if "adapter" in args.model_name:
        model_cls = AutoPeftModelForCausalLM
        config = PeftConfig.from_pretrained(args.model_name)
        if tokenizer_name is None:
            tokenizer_name = config.base_model_name_or_path
    else:
        model_cls = AutoModelForCausalLM
        if tokenizer_name is None:
            tokenizer_name = args.model_name

    model = model_cls.from_pretrained(
        args.model_name,
        revision=args.model_revision,
        quantization_config=quantization_config,
        device_map=device_map,
        torch_dtype=dtype,
    )

    model.config.torch_dtype = dtype
    model.config.use_cache = not script_args.gradient_checkpointing
    # if script_args.ignore_bias_buffers:
    # torch distributed hack
    if quantization_config is not None:
        model = prepare_model_for_kbit_training(model, use_gradient_checkpointing=script_args.gradient_checkpointing)

    # we add `score` to the list of modules to save to
    # correctly save the score head.
    # set target modules to be query_key_value for Pythia
    if args.use_peft and args.mode == "train":
        peft_config = LoraConfig(
            r=args.lora_r,
            lora_alpha=args.lora_alpha,
            lora_dropout=args.lora_dropout,
            bias="none",
            task_type="CAUSAL_LM",
            target_modules="all-linear",
        )

        model = get_peft_model(model, peft_config)

        ref_model = None
    else:
        ref_model = AutoModelForCausalLM.from_pretrained(
            args.ref_model_name,
            revision=args.ref_model_revision,
            quantization_config=quantization_config,
            device_map=device_map,
            torch_dtype=dtype,
        )

    tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)

    if tokenizer_name.startswith("EleutherAI"):
        tokenizer.add_special_tokens({"pad_token": "[PAD]"})
    elif getattr(tokenizer, "pad_token", None) is None:
        tokenizer.pad_token = tokenizer.eos_token

    return model, tokenizer, ref_model


def create_and_prepare_gold_model(args):
    if script_args.gold_in_8bit or script_args.gold_in_4bit:
        gold_quantization_config = BitsAndBytesConfig(
            load_in_8bit=script_args.gold_in_8bit, load_in_4bit=script_args.gold_in_4bit
        )
        gold_device_map = {"": Accelerator().local_process_index}
    else:
        gold_device_map = None
        gold_quantization_config = None

    if script_args.gold_bf16:
        torch_dtype = torch.bfloat16
    elif script_args.gold_fp16:
        torch_dtype = torch.float16
    else:
        torch_dtype = torch.float32

    if script_args.gold_model_name.startswith("vwxyzjn"):
        gold_model_cls = ScalarModel
    else:
        gold_model_cls = AutoModelForSequenceClassification

    gold_model = gold_model_cls.from_pretrained(
        script_args.gold_model_name,
        revision=script_args.gold_model_revision,
        quantization_config=gold_quantization_config,
        torch_dtype=torch_dtype,
        device_map=gold_device_map,
    )

    # if getattr(gold_model.config, "pad_token_id", None) is None:
    #     gold_model.config.pad_token_id = gold_model.config.eos_token_id

    return gold_model


def strip_prompt(examples):
    examples["prompt"] = [prompt.strip() for prompt in examples["prompt"]]

    return examples


def create_and_prepare_dataset(args, tokenizer):
    train_dataset = load_dataset(args.dataset_name, split=args.train_split)
    eval_dataset = load_dataset(args.dataset_name, split=args.eval_split)

    if args.prompt_field != "prompt":
        train_dataset = train_dataset.rename_column(args.prompt_field, "prompt")
        eval_dataset = eval_dataset.rename_column(args.prompt_field, "prompt")

    if args.pseudo_dataset_name is not None:
        all_train_datasets = [train_dataset]
        pseudo_dataset_names = args.pseudo_dataset_name.split(",")
        for ds_name in pseudo_dataset_names:
            dataset = load_dataset(ds_name, split=args.pseudo_dataset_split)
            if args.strip_prompt:
                dataset = dataset.map(strip_prompt, batched=True)
            all_train_datasets.append(dataset)

        train_dataset = concatenate_datasets(all_train_datasets)

    if args.dataset_name.startswith("vwxyzjn"):
        # remove eos token from end of chosen
        def remove_eos(example):
            example["chosen"] = example["chosen"].removesuffix(tokenizer.eos_token)
            example["rejected"] = example["rejected"].removesuffix(tokenizer.eos_token)

            return example

        train_dataset = train_dataset.map(remove_eos)
        eval_dataset = eval_dataset.map(remove_eos)

    return train_dataset, eval_dataset


if __name__ == "__main__":
    parser = HfArgumentParser(ScriptArguments)
    script_args = parser.parse_args_into_dataclasses()[0]

    # 1. load a pretrained model
    model, tokenizer, ref_model = create_and_prepare_model(script_args)

    if script_args.ignore_bias_buffers:
        # torch distributed hack
        model._ddp_params_and_buffers_to_ignore = [
            name for name, buffer in model.named_buffers() if buffer.dtype == torch.bool
        ]

    train_dataset, eval_dataset = create_and_prepare_dataset(script_args, tokenizer)

    if script_args.push_to_hub:
        # configname_wandbid
        model_id = os.getenv("WANDB_NAME", "config_name") + "_" + os.getenv("WANDB_RUN_ID", "xxxxx")
        hub_model_id = f"{script_args.push_to_hub_organization}/{model_id}"
        print(f"pushing model to {hub_model_id}")
    else:
        hub_model_id = None

    # 4. initialize training arguments:
    training_args = TrainingArguments(
        output_dir=script_args.output_dir,
        per_device_train_batch_size=script_args.per_device_train_batch_size,
        per_device_eval_batch_size=script_args.per_device_eval_batch_size,
        num_train_epochs=script_args.num_train_epochs,
        max_steps=script_args.max_steps,
        remove_unused_columns=False,
        gradient_accumulation_steps=script_args.gradient_accumulation_steps,
        learning_rate=script_args.learning_rate,
        lr_scheduler_type=script_args.lr_scheduler_type,
        evaluation_strategy="epoch" if script_args.eval_steps is None else "steps",
        save_strategy=script_args.save_strategy,
        logging_first_step=True,
        logging_steps=script_args.logging_steps,
        eval_steps=script_args.eval_steps,
        save_steps=script_args.save_steps,
        optim=script_args.optimizer_type,
        warmup_steps=script_args.warmup_steps,
        report_to=script_args.report_to,
        bf16=script_args.bf16,
        fp16=script_args.fp16,
        ddp_find_unused_parameters=(script_args.gradient_checkpointing),
        push_to_hub=script_args.push_to_hub,
        hub_model_id=hub_model_id,
    )

    # 5. initialize the DPO trainer
    dpo_trainer = DPOTrainer(
        model=model,
        ref_model=ref_model,
        args=training_args,
        beta=script_args.beta,
        train_dataset=train_dataset,
        eval_dataset=eval_dataset,
        tokenizer=tokenizer,
        max_length=script_args.max_length,
        max_target_length=script_args.max_target_length,
        max_prompt_length=script_args.max_prompt_length,
    )

    if dpo_trainer.accelerator.is_local_main_process:
        wandb.init(reinit=True)
        wandb.config.update(asdict(script_args), allow_val_change=True)

    # Gold Eval
    if script_args.gold_eval != "none" and script_args.mode in ["train", "eval"]:
        gold_eval_dataset = load_dataset(
            script_args.gold_dataset_name,
            split=script_args.gold_eval_split,
        )

        if script_args.strip_prompt:
            gold_eval_dataset = gold_eval_dataset.map(strip_prompt, batched=True)

        if script_args.generate_greedy:
            generation_config = GenerationConfig(
                max_new_tokens=script_args.max_target_length,
                do_sample=False,
                num_beams=1,
                eos_token_id=tokenizer.eos_token_id,
                pad_token_id=tokenizer.eos_token_id,
            )
        else:
            generation_config = GenerationConfig(
                max_new_tokens=script_args.max_target_length,
                min_length=-1,
                top_k=0.0,
                top_p=1.0,
                do_sample=True,
                eos_token_id=tokenizer.eos_token_id,
                pad_token_id=tokenizer.eos_token_id,
            )

        if script_args.gold_eval == "full":
            gold_model = create_and_prepare_gold_model(script_args)

            callback = GoldModelRewardCallback(
                training_args,
                gold_model,
                gold_eval_dataset,
                tokenizer,
                dpo_trainer.accelerator,
                script_args.max_length,
                script_args.max_prompt_length,
                script_args.gold_prompt_field,
                script_args.gold_target_field,
                script_args.gold_load_and_unload,
                script_args.log_n_samples_during_eval,
                generation_config,
            )
        else:
            if script_args.gold_eval == "gen":
                callback_cls = PerplexityGenCallback
            elif script_args.gold_eval == "ppl":
                callback_cls = PerplexityCallback
            else:
                raise NotImplementedError

            callback = callback_cls(
                args=training_args,
                dataset=gold_eval_dataset,
                tokenizer=tokenizer,
                accelerator=dpo_trainer.accelerator,
                max_length=script_args.max_length,
                max_prompt_length=script_args.max_prompt_length,
                prompt_field=script_args.gold_prompt_field,
                target_field=script_args.gold_target_field,
                log_n_samples_during_eval=script_args.log_n_samples_during_eval,
                generation_config=generation_config,
                hub_model_id=hub_model_id,
            )

        dpo_trainer.add_callback(callback)

    if script_args.eval_first_step:

        class EvaluateFirstStepCallback(TrainerCallback):
            def on_step_end(self, args, state, control, **kwargs):
                if state.global_step == 1:
                    control.should_evaluate = True

        dpo_trainer.add_callback(EvaluateFirstStepCallback())

    # 6. train
    if script_args.mode == "train":
        last_checkpoint = get_last_checkpoint(script_args.output_dir)
        dpo_trainer.train(resume_from_checkpoint=last_checkpoint)
        dpo_trainer.save_model(script_args.output_dir + "/final_model")
    elif script_args.mode == "eval":
        print("evaluating")
        results = dpo_trainer.evaluate()
        print(results)
    elif script_args.mode == "relabel":

        def relabel_with_preds(batch: Dict[str, List]):
            relabel_batch = {
                "prompt": [],
                "chosen": [],
                "rejected": [],
                "pred_chosen": [],
                "pred_rejected": [],
            }
            for prompt, chosen, rejected, pred_chosen, pred_rejected in zip(
                batch["prompt"],
                batch["chosen"],
                batch["rejected"],
                batch["pred_chosen"],
                batch["pred_rejected"],
            ):
                relabel_batch["prompt"].append(prompt)
                if pred_chosen >= pred_rejected:
                    relabel_batch["chosen"].append(chosen)
                    relabel_batch["rejected"].append(rejected)
                    relabel_batch["pred_chosen"].append(pred_chosen)
                    relabel_batch["pred_rejected"].append(pred_rejected)
                else:
                    relabel_batch["chosen"].append(rejected)
                    relabel_batch["rejected"].append(chosen)
                    relabel_batch["pred_chosen"].append(pred_rejected)
                    relabel_batch["pred_rejected"].append(pred_chosen)

            return relabel_batch

        dpo_trainer.accelerator.print(f"Prediction {script_args.eval_split}")
        preds, _, metrics = dpo_trainer.predict(eval_dataset)
        (
            chosen_rewards,
            rejected_rewards,
            policy_chosen_logps,
            policy_rejected_logps,
            reference_chosen_logps,
            reference_rejected_logps,
        ) = preds
        dpo_trainer.accelerator.print(f"metrics {metrics}")

        if dpo_trainer.accelerator.is_local_main_process:
            print("Relabelling Dataset and Saving")
            dataset = load_dataset(script_args.dataset_name, split=script_args.eval_split)
            dataset = dataset.add_column("pred_chosen", chosen_rewards)
            dataset = dataset.add_column("pred_rejected", rejected_rewards)

            relabel_dataset = dataset.map(
                relabel_with_preds,
                batched=True,
            )

            description = f"{script_args.dataset_name} relabelled with {script_args.model_name}"
            relabel_dataset._info.description = description

        if dpo_trainer.accelerator.is_local_main_process:
            # print("Saving")
            # relabel_dataset.save_to_disk(script_args.output_dir)
            print("Pushing")
            # repo_id = f"MilaRLHF/{os.path.basename(script_args.output_dir)}"
            relabel_dataset.push_to_hub(os.path.basename(script_args.output_dir), split=script_args.eval_split)
            # relabel_dataset_card = DatasetCard.load(repo_id)
            # relabel_dataset_card.text = description
            # relabel_dataset_card.push_to_hub(repo_id)
    elif script_args.mode == "predict":
        dpo_trainer.accelerator.print(f"Prediction {script_args.eval_split}")
        preds, _, metrics = dpo_trainer.predict(eval_dataset)
        (
            chosen_rewards,
            rejected_rewards,
            policy_chosen_logps,
            policy_rejected_logps,
            reference_chosen_logps,
            reference_rejected_logps,
        ) = preds
        dpo_trainer.accelerator.print(f"metrics {metrics}")

        if dpo_trainer.accelerator.is_local_main_process:
            print("Relabelling Dataset and Saving")
            dataset = load_dataset(script_args.dataset_name, split=script_args.eval_split)
            model_basename = script_args.model_name.rsplit("/", 1)[-1]
            dataset = dataset.add_column(f"pred_chosen_{model_basename}", chosen_rewards)
            dataset = dataset.add_column(f"pred_rejected_{model_basename}", rejected_rewards)

        if dpo_trainer.accelerator.is_local_main_process:
            # print("Saving")
            # relabel_dataset.save_to_disk(script_args.output_dir)
            print("Pushing")
            dataset.push_to_hub(os.path.basename(script_args.output_dir), split=script_args.eval_split)