pythia410m-sft-tldr / code /inference_pseudolabel.py
mnoukhov's picture
Training in progress, step 500
1904ee8 verified
import os
import shutil
from dataclasses import dataclass, field
from typing import Optional
import torch
from accelerate import Accelerator
from datasets import Dataset, DatasetDict, DatasetInfo, load_dataset
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import (
AutoModelForSequenceClassification,
AutoTokenizer,
BitsAndBytesConfig,
HfArgumentParser,
)
shutil.disk_usage = lambda x: shutil._ntuple_diskusage(1, 1, 1)
@dataclass
class ScriptArguments:
output_dir: Optional[str] = field(
default="/home/toolkit/huggingface/openai_summarize_comparison_pseudolabel",
metadata={"help": "output folder"},
)
model_name: Optional[str] = field(default="EleutherAI/pythia-6.9b-deduped", metadata={"help": "the model name"})
# tokenizer_name: Optional[str] = field(default=None, metadata={"help": "the tokenizer name"})
dataset_name: Optional[str] = field(
default="mnoukhov/openai_summarize_comparisons_tldrprompt", metadata={"help": "the dataset name"}
)
train_split: Optional[str] = field(default="train[:20]", metadata={"help": "the dataset name"})
eval_split: Optional[str] = field(default="test[:20]", metadata={"help": "the dataset name"})
load_in_8bit: Optional[bool] = field(default=False, metadata={"help": "load the model in 8 bits precision"})
load_in_4bit: Optional[bool] = field(default=False, metadata={"help": "load the model in 4 bits precision"})
better_transformer: Optional[bool] = field(default=False)
flash_attention: Optional[bool] = field(default=False)
batch_size: Optional[int] = field(default=4)
bf16: Optional[bool] = field(default=False)
fp16: Optional[bool] = field(default=False)
fp16_model: Optional[bool] = field(default=False)
seq_length: Optional[int] = field(default=560, metadata={"help": "Input sequence length"})
def create_and_prepare_model(args):
if args.load_in_8bit and args.load_in_4bit:
raise ValueError("You can't load the model in 8 bits and 4 bits at the same time")
elif args.load_in_8bit or args.load_in_4bit:
quantization_config = BitsAndBytesConfig(load_in_8bit=args.load_in_8bit, load_in_4bit=args.load_in_4bit)
device_map = {"": Accelerator().local_process_index}
else:
device_map = None
quantization_config = None
if args.bf16:
torch_dtype = torch.bfloat16
elif args.fp16_model:
torch_dtype = torch.float16
else:
torch_dtype = None
model = AutoModelForSequenceClassification.from_pretrained(
args.model_name,
quantization_config=quantization_config,
device_map=device_map,
num_labels=1,
torch_dtype=torch_dtype,
)
if args.better_transformer:
model.to_bettertransformer()
tokenizer = AutoTokenizer.from_pretrained(script_args.model_name)
if getattr(tokenizer, "pad_token", None) is None:
tokenizer.pad_token = tokenizer.eos_token
if getattr(model.config, "pad_token_id", None) is None:
model.config.pad_token_id = model.config.eos_token_id
return model, tokenizer
def preprocess_function(examples):
str_chosen = []
str_rejected = []
for prompt, chosen, rejected in zip(examples["prompt"], examples["chosen"], examples["rejected"]):
str_chosen.append(prompt + " " + chosen)
str_rejected.append(prompt + " " + rejected)
tokenized_chosen = tokenizer(
str_chosen, padding=True, truncation=True, max_length=script_args.seq_length, return_tensors="pt"
)
tokenized_rejected = tokenizer(
str_rejected, padding=True, truncation=True, max_length=script_args.seq_length, return_tensors="pt"
)
return {
"input_ids_chosen": tokenized_chosen["input_ids"],
"attention_mask_chosen": tokenized_chosen["attention_mask"],
"input_ids_rejected": tokenized_rejected["input_ids"],
"attention_mask_rejected": tokenized_rejected["attention_mask"],
}
parser = HfArgumentParser(ScriptArguments)
script_args = parser.parse_args_into_dataclasses()[0]
model, tokenizer = create_and_prepare_model(script_args)
accelerator = Accelerator()
data_splits = [split for split in [script_args.train_split, script_args.eval_split] if split is not None]
relabel_dataset = DatasetDict()
for split in data_splits:
dataset = load_dataset(script_args.dataset_name, split=split)
dataloader = DataLoader(dataset, batch_size=script_args.batch_size)
model, dataloader = accelerator.prepare(model, dataloader)
model.eval()
output_dataset = {"prompt": [], "chosen": [], "rejected": []}
for examples in tqdm(dataloader):
inputs = preprocess_function(examples)
with torch.no_grad():
# if script_args.flash_attention:
# with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=False):
# output = model(
# batch["input_ids"],
# attention_mask=batch["attention_mask"],
# )
rewards_chosen = model(
input_ids=inputs["input_ids_chosen"].to(accelerator.device),
attention_mask=inputs["attention_mask_chosen"].to(accelerator.device),
)[0]
rewards_rejected = model(
input_ids=inputs["input_ids_rejected"].to(accelerator.device),
attention_mask=inputs["attention_mask_rejected"].to(accelerator.device),
)[0]
pseudolabels = torch.sign(rewards_chosen - rewards_rejected)
pseudolabels = accelerator.gather(pseudolabels).cpu().numpy()
if accelerator.is_local_main_process:
for prompt, init_chosen, init_rejected, label in zip(
examples["prompt"], examples["chosen"], examples["rejected"], pseudolabels
):
output_dataset["prompt"].append(prompt)
if label >= 0:
output_dataset["chosen"].append(init_chosen)
output_dataset["rejected"].append(init_rejected)
else:
output_dataset["chosen"].append(init_rejected)
output_dataset["rejected"].append(init_chosen)
if accelerator.is_local_main_process:
ds_info = DatasetInfo(f"{script_args.dataset_name} relabelled with {script_args.model_name}")
if not split.isalnum():
split = "".join(c for c in split if c.isalpha())
relabel_dataset[split] = Dataset.from_dict(output_dataset, split=split, info=ds_info)
if accelerator.is_local_main_process:
relabel_dataset.save_to_disk(script_args.output_dir)
relabel_dataset.push_to_hub(os.path.basename(script_args.output_dir))