|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from dataclasses import dataclass, field |
|
from typing import Any, Dict, List, Optional, Union |
|
|
|
import bitsandbytes as bnb |
|
import torch |
|
from accelerate import Accelerator, DistributedDataParallelKwargs |
|
from datasets import load_dataset |
|
from peft import LoraConfig, prepare_model_for_kbit_training |
|
from torch.utils.data import DataLoader |
|
from tqdm import tqdm |
|
from transformers import ( |
|
AutoModelForSequenceClassification, |
|
AutoTokenizer, |
|
BitsAndBytesConfig, |
|
HfArgumentParser, |
|
PreTrainedTokenizerBase, |
|
pipeline, |
|
) |
|
|
|
import wandb |
|
|
|
|
|
from trl import AutoModelForCausalLMWithValueHead, PPOConfig, PPOTrainer, set_seed |
|
from trl.core import LengthSampler |
|
from trl.models.modeling_value_adapter import AutoModelForCausalLMWithValueAdapter |
|
|
|
|
|
|
|
|
|
|
|
|
|
tqdm.pandas() |
|
|
|
|
|
@dataclass |
|
class ScriptArguments: |
|
""" |
|
The name of the Casual LM model we wish to fine with PPO |
|
""" |
|
|
|
model_name: Optional[str] = field(default="", metadata={"help": "the model name"}) |
|
reward_adapter_name: Optional[str] = field(default="", metadata={"help": "the reward model name"}) |
|
|
|
dataset_name: Optional[str] = field( |
|
default="CarperAI/openai_summarize_tldr", metadata={"help": "the dataset name"} |
|
) |
|
train_split: Optional[str] = field( |
|
default="train", metadata={"help": "the dataset split to evaluate on; default to 'none' (no evaluation)"} |
|
) |
|
eval_split: Optional[str] = field( |
|
default="train", metadata={"help": "the dataset split to evaluate on; default to 'none' (no evaluation)"} |
|
) |
|
log_with: Optional[str] = field(default="wandb", metadata={"help": "use 'wandb' to log with wandb"}) |
|
learning_rate: Optional[float] = field(default=1.41e-5, metadata={"help": "the learning rate"}) |
|
mini_batch_size: Optional[int] = field(default=1, metadata={"help": "the PPO minibatch size"}) |
|
batch_size: Optional[int] = field(default=32, metadata={"help": "the batch size"}) |
|
ppo_epochs: Optional[int] = field(default=4, metadata={"help": "the number of ppo epochs"}) |
|
gradient_accumulation_steps: Optional[int] = field( |
|
default=4, metadata={"help": "the number of gradient accumulation steps"} |
|
) |
|
adafactor: Optional[bool] = field(default=False, metadata={"help": "whether to use the adafactor optimizer"}) |
|
early_stopping: Optional[bool] = field(default=False, metadata={"help": "whether to early stop"}) |
|
target_kl: Optional[float] = field(default=0.1, metadata={"help": "kl target for early stopping"}) |
|
reward_baseline: Optional[float] = field( |
|
default=0.0, |
|
metadata={"help": "a baseline value that is subtracted from the reward"}, |
|
) |
|
batched_gen: Optional[bool] = field(default=False, metadata={"help": "whether to use the batched text gen"}) |
|
save_steps: Optional[int] = field(default=1000, metadata={"help": "the number of steps to save at"}) |
|
save_strategy: Optional[str] = field(default="steps") |
|
output_dir: Optional[str] = field(default="runs/", metadata={"help": "n steps to save the model"}) |
|
seed: Optional[int] = field(default=0, metadata={"help": "the seed"}) |
|
steps: Optional[int] = field(default=20000, metadata={"help": "number of epochs"}) |
|
init_kl_coef: Optional[float] = field( |
|
default=0.2, |
|
metadata={"help": "Initial KL penalty coefficient (used for adaptive and linear control)"}, |
|
) |
|
adap_kl_ctrl: Optional[bool] = field(default=True, metadata={"help": "Use adaptive KL control, otherwise linear"}) |
|
value_adapter: Optional[bool] = field(default=False) |
|
separate_reward_model: Optional[str] = field(default=None, metadata={"help": "the reward model name"}) |
|
|
|
|
|
output_min_length: Optional[int] = field(default=24, metadata={"help": "the batch size"}) |
|
output_max_length: Optional[int] = field(default=48, metadata={"help": "the batch size"}) |
|
input_max_length: Optional[int] = field(default=512, metadata={"help": "maximum length for generation"}) |
|
|
|
|
|
load_in_8bit: Optional[bool] = field(default=False, metadata={"help": "load the model in 8 bits precision"}) |
|
load_in_4bit: Optional[bool] = field(default=False, metadata={"help": "load the model in 4 bits precision"}) |
|
bf16: Optional[bool] = field( |
|
default=False, |
|
metadata={ |
|
"help": "This essentially cuts the training time in half if you want to sacrifice a little precision and have a supported GPU." |
|
}, |
|
) |
|
fp16: Optional[bool] = field( |
|
default=False, |
|
metadata={ |
|
"help": "This essentially cuts the training time in half if you want to sacrifice a little precision and have a supported GPU." |
|
}, |
|
) |
|
|
|
|
|
use_lora: Optional[bool] = field( |
|
default=True, |
|
) |
|
lora_alpha: Optional[float] = field(default=32, metadata={"help": "the lora alpha parameter"}) |
|
lora_dropout: Optional[float] = field(default=0.05, metadata={"help": "the lora dropout parameter"}) |
|
lora_r: Optional[int] = field(default=8, metadata={"help": "the lora r parameter"}) |
|
lora_all_linear: Optional[bool] = field(default=False, metadata={"help": "lora adapter on all linear layers"}) |
|
|
|
|
|
eval_steps: Optional[int] = field(default=None) |
|
gold_model_name: Optional[str] = field(default=None, metadata={"help": "the reward model name"}) |
|
gold_in_8bit: Optional[bool] = field(default=False, metadata={"help": "gold the model in 8 bits precision"}) |
|
gold_in_4bit: Optional[bool] = field(default=False, metadata={"help": "gold the model in 4 bits precision"}) |
|
gold_bf16: Optional[bool] = field( |
|
default=False, |
|
) |
|
gold_fp16: Optional[bool] = field( |
|
default=False, |
|
) |
|
gold_eval_greedy: Optional[bool] = field(default=True) |
|
|
|
|
|
|
|
input_ids_input: Optional[bool] = field( |
|
default=False, |
|
) |
|
strip_prompt: Optional[bool] = field( |
|
default=False, |
|
) |
|
|
|
just_eval: Optional[bool] = field(default=False) |
|
|
|
|
|
@dataclass |
|
class PromptCollator: |
|
tokenizer: PreTrainedTokenizerBase |
|
padding: Union[bool, str] = True |
|
max_prompt_length: Optional[int] = None |
|
prompt_field: str = "prompt" |
|
return_tensors: str = "pt" |
|
|
|
def __call__(self, features: List[Dict[str, Any]]) -> Dict[str, Any]: |
|
prompts = [feat[self.prompt_field] for feat in features] |
|
|
|
original_side = self.tokenizer.padding_side |
|
self.tokenizer.padding_side = "left" |
|
|
|
tokenized_batch = self.tokenizer( |
|
prompts, |
|
truncation=True, |
|
padding=True, |
|
max_length=self.max_prompt_length, |
|
return_tensors=self.return_tensors, |
|
) |
|
tokenized_batch["prompt"] = prompts |
|
|
|
self.tokenizer.padding_side = original_side |
|
|
|
return tokenized_batch |
|
|
|
|
|
def find_all_linear_names(args, model): |
|
cls = bnb.nn.Linear4bit if args.load_in_4bit else (bnb.nn.Linear8bitLt if args.load_in_8bit else torch.nn.Linear) |
|
lora_module_names = set() |
|
for name, module in model.named_modules(): |
|
if isinstance(module, cls): |
|
names = name.split(".") |
|
lora_module_names.add(names[0] if len(names) == 1 else names[-1]) |
|
|
|
if "lm_head" in lora_module_names: |
|
lora_module_names.remove("lm_head") |
|
|
|
if "score" in lora_module_names: |
|
lora_module_names.remove("score") |
|
|
|
return list(lora_module_names) |
|
|
|
|
|
def create_and_prepare_model(args): |
|
if args.load_in_8bit and args.load_in_4bit: |
|
raise ValueError("You can't load the model in 8 bits and 4 bits at the same time") |
|
elif args.load_in_8bit or args.load_in_4bit: |
|
quantization_config = BitsAndBytesConfig(load_in_8bit=args.load_in_8bit, load_in_4bit=args.load_in_4bit) |
|
device_map = {"": Accelerator().local_process_index} |
|
else: |
|
device_map = None |
|
quantization_config = None |
|
|
|
if args.bf16: |
|
torch_dtype = torch.bfloat16 |
|
|
|
|
|
else: |
|
torch_dtype = torch.float32 |
|
|
|
if script_args.value_adapter: |
|
model_cls = AutoModelForCausalLMWithValueAdapter |
|
else: |
|
model_cls = AutoModelForCausalLMWithValueHead |
|
|
|
if args.use_lora: |
|
|
|
|
|
|
|
|
|
|
|
if args.lora_all_linear: |
|
|
|
|
|
target_modules = ["dense_h_to_4h", "dense_4h_to_h", "query_key_value", "dense"] |
|
else: |
|
target_modules = None |
|
|
|
peft_config = LoraConfig( |
|
r=args.lora_r, |
|
lora_alpha=args.lora_alpha, |
|
lora_dropout=args.lora_dropout, |
|
bias="none", |
|
task_type="CAUSAL_LM", |
|
target_modules=target_modules, |
|
modules_to_save=["score"], |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
else: |
|
peft_config = None |
|
|
|
model = model_cls.from_pretrained( |
|
args.model_name, |
|
quantization_config=quantization_config, |
|
device_map=device_map, |
|
torch_dtype=torch_dtype, |
|
peft_config=peft_config, |
|
reward_adapter=script_args.reward_adapter_name, |
|
) |
|
|
|
|
|
|
|
if quantization_config is not None: |
|
model = prepare_model_for_kbit_training(model, use_gradient_checkpointing=args.gradient_checkpointing) |
|
args.gradient_checkpointing = False |
|
|
|
model.config.torch_dtype = torch_dtype |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(script_args.model_name) |
|
if getattr(tokenizer, "pad_token", None) is None: |
|
tokenizer.pad_token = tokenizer.eos_token |
|
|
|
if getattr(model.config, "pad_token_id", None) is None: |
|
model.config.pad_token_id = model.config.eos_token_id |
|
|
|
model.eval() |
|
|
|
return model, tokenizer |
|
|
|
|
|
def create_and_prepare_dataset(args, tokenizer, split, num_proc=2): |
|
dataset = load_dataset(args.dataset_name, split=split) |
|
|
|
def strip_prompt(examples): |
|
examples["prompt"] = [prompt.strip() for prompt in examples["prompt"]] |
|
|
|
return examples |
|
|
|
if args.strip_prompt: |
|
dataset = dataset.map(strip_prompt, batched=True) |
|
|
|
dataset = dataset.rename_column("prompt", "query") |
|
original_columns = dataset.column_names |
|
original_columns.remove("query") |
|
|
|
dataset = dataset.map( |
|
tokenizer, |
|
batched=True, |
|
num_proc=num_proc, |
|
input_columns="query", |
|
remove_columns=original_columns, |
|
fn_kwargs=dict(truncation=True, max_length=args.input_max_length), |
|
) |
|
|
|
dataset.set_format("torch") |
|
return dataset |
|
|
|
|
|
def collator(data): |
|
return dict((key, [d[key] for d in data]) for key in data[0]) |
|
|
|
|
|
def decode_and_encode(output_token_ids: List[torch.Tensor], tokenizer, max_length, de_and_retokenize=True): |
|
if de_and_retokenize: |
|
texts = [q + r for q, r in zip(batch["query"], batch["response"])] |
|
output_encoding = tokenizer( |
|
texts, |
|
padding=True, |
|
truncation=True, |
|
return_tensors="pt", |
|
return_token_type_ids=False, |
|
max_length=max_length, |
|
).to(ppo_trainer.accelerator.device) |
|
else: |
|
default_padding_side = tokenizer.padding_side |
|
tokenizer.padding_side = "left" |
|
full_response_mask = [torch.ones_like(element) for element in output_token_ids] |
|
full_response_encoding = {"input_ids": output_token_ids, "attention_mask": full_response_mask} |
|
output_encoding = tokenizer.pad( |
|
full_response_encoding, |
|
padding=True, |
|
max_length=max_length, |
|
return_tensors="pt", |
|
) |
|
tokenizer.padding_side = default_padding_side |
|
|
|
return output_encoding |
|
|
|
|
|
def create_and_prepare_gold_model(script_args, accelerator): |
|
if script_args.gold_in_8bit or script_args.gold_in_4bit: |
|
gold_quantization_config = BitsAndBytesConfig( |
|
load_in_8bit=script_args.gold_in_8bit, load_in_4bit=script_args.gold_in_4bit |
|
) |
|
gold_device_map = {"": accelerator.local_process_index} |
|
else: |
|
gold_device_map = None |
|
gold_quantization_config = None |
|
|
|
if script_args.gold_bf16: |
|
torch_dtype = torch.bfloat16 |
|
elif script_args.gold_fp16: |
|
torch_dtype = torch.float16 |
|
else: |
|
torch_dtype = torch.float32 |
|
|
|
gold_model = AutoModelForSequenceClassification.from_pretrained( |
|
script_args.gold_model_name, |
|
quantization_config=gold_quantization_config, |
|
torch_dtype=torch_dtype, |
|
device_map=gold_device_map, |
|
) |
|
|
|
if getattr(gold_model.config, "pad_token_id", None) is None: |
|
gold_model.config.pad_token_id = gold_model.config.eos_token_id |
|
|
|
gold_model = accelerator.prepare(gold_model) |
|
gold_model.eval() |
|
|
|
return gold_model |
|
|
|
|
|
def create_and_prepare_eval(args, tokenizer, accelerator): |
|
dataset = load_dataset(args.dataset_name, split=args.eval_split) |
|
|
|
def strip_prompt(examples): |
|
examples["prompt"] = [prompt.strip() for prompt in examples["prompt"]] |
|
|
|
return examples |
|
|
|
if args.strip_prompt: |
|
dataset = dataset.map(strip_prompt, batched=True) |
|
|
|
|
|
|
|
|
|
|
|
|
|
dataloader = DataLoader(dataset, batch_size=args.batch_size) |
|
|
|
return accelerator.prepare(dataloader) |
|
|
|
|
|
def get_batch_samples( |
|
accelerator, model, tokenizer, input_ids, attention_mask, return_ids=False, generation_config=None |
|
): |
|
policy_output = model.generate( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
generation_config=generation_config, |
|
) |
|
|
|
|
|
with accelerator.unwrap_model(model).disable_adapter(): |
|
reference_output = model.generate( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
generation_config=generation_config, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
policy_output = pad_to_length(policy_output, self.max_length, tokenizer.pad_token_id) |
|
policy_output_decoded = tokenizer.batch_decode(policy_output, skip_special_tokens=True) |
|
|
|
reference_output = pad_to_length(reference_output, self.max_length, tokenizer.pad_token_id) |
|
reference_output_decoded = tokenizer.batch_decode(reference_output, skip_special_tokens=True) |
|
|
|
if return_ids: |
|
return policy_output_decoded, reference_output_decoded, policy_output |
|
else: |
|
return policy_output_decoded, reference_output_decoded |
|
|
|
|
|
def gold_eval(dataloader, model, gold_model, accelerator, epoch, log_n_samples_during_eval=0): |
|
samples_to_log = [] |
|
gold_reward_sum = 0.0 |
|
total_samples = 0 |
|
greedy_generation_kwargs = { |
|
"min_length": -1, |
|
"top_p": 1.0, |
|
"do_sample": False, |
|
"pad_token_id": tokenizer.pad_token_id, |
|
"eos_token_id": tokenizer.eos_token_id, |
|
"max_new_tokens": script_args.output_max_length, |
|
} |
|
for batch in tqdm( |
|
dataloader, |
|
disable=not ppo_trainer.accelerator.is_local_main_process, |
|
desc="Gold Eval", |
|
): |
|
import pdb |
|
|
|
pdb.set_trace() |
|
full_response_tensors = ppo_trainer.generate( |
|
batch["input_ids"], |
|
return_prompt=True, |
|
**greedy_generation_kwargs, |
|
) |
|
|
|
response_tensors = [] |
|
for question, full_response in zip(question_tensors, full_response_tensors): |
|
response_tensors.append(full_response[len(question) :]) |
|
|
|
batch["response"] = tokenizer.batch_decode(response_tensors, skip_special_tokens=True) |
|
|
|
texts = [q + r for q, r in zip(batch["prompt"], batch["response"])] |
|
import pdb |
|
|
|
pdb.set_trace() |
|
policy_output = tokenizer( |
|
texts, padding=True, truncation=True, return_tensors="pt", return_token_type_ids=False |
|
).to(ppo_trainer.accelerator.device) |
|
|
|
|
|
with torch.no_grad(): |
|
gold_rewards = gold_model( |
|
input_ids=policy_output["input_ids"], attention_mask=policy_output["attention_mask"] |
|
)[0] |
|
|
|
gold_rewards = accelerator.gather_for_metrics(gold_rewards) |
|
|
|
if accelerator.is_local_main_process(): |
|
gold_reward_sum += gold_rewards.sum().item() |
|
total_samples += gold_rewards.size(0) |
|
|
|
for i, (prompt, resp) in enumerate(zip(batch["prompt"], batch["response"])): |
|
if len(samples_to_log) < log_n_samples_during_eval: |
|
samples_to_log.append([prompt, resp]) |
|
else: |
|
break |
|
|
|
if accelerator.is_local_main_process(): |
|
print(f"gold reward mean {gold_reward_sum / total_samples}") |
|
gold_log = { |
|
"eval/gold_rewards_mean": gold_reward_sum / total_samples, |
|
} |
|
gold_log["epoch"] = epoch |
|
if samples_to_log: |
|
gold_log["game_log"] = ( |
|
wandb.Table( |
|
columns=["Prompt", "Policy", "Ref Model"], |
|
rows=samples_to_log, |
|
), |
|
) |
|
accelerator.log(gold_log) |
|
|
|
return gold_reward_sum / total_samples, samples_to_log |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = HfArgumentParser(ScriptArguments) |
|
script_args: ScriptArguments = parser.parse_args_into_dataclasses()[0] |
|
config = PPOConfig( |
|
steps=script_args.steps, |
|
model_name=script_args.model_name, |
|
learning_rate=script_args.learning_rate, |
|
log_with=script_args.log_with, |
|
batch_size=script_args.batch_size, |
|
mini_batch_size=script_args.mini_batch_size, |
|
gradient_accumulation_steps=script_args.gradient_accumulation_steps, |
|
optimize_cuda_cache=True, |
|
early_stopping=script_args.early_stopping, |
|
target_kl=script_args.target_kl, |
|
ppo_epochs=script_args.ppo_epochs, |
|
seed=script_args.seed, |
|
init_kl_coef=script_args.init_kl_coef, |
|
adap_kl_ctrl=script_args.adap_kl_ctrl, |
|
accelerator_kwargs={"kwargs_handlers": [DistributedDataParallelKwargs(find_unused_parameters=False)]}, |
|
) |
|
|
|
|
|
set_seed(config.seed) |
|
|
|
model, tokenizer = create_and_prepare_model(script_args) |
|
train_dataset = create_and_prepare_dataset(script_args, tokenizer, script_args.train_split) |
|
|
|
|
|
ppo_trainer = PPOTrainer( |
|
config, |
|
model, |
|
ref_model=None, |
|
tokenizer=tokenizer, |
|
dataset=train_dataset, |
|
data_collator=collator, |
|
) |
|
|
|
|
|
if script_args.gold_model_name is not None: |
|
gold_model = create_and_prepare_gold_model(script_args, ppo_trainer.accelerator) |
|
eval_dataloader = create_and_prepare_eval(script_args, tokenizer, ppo_trainer.accelerator) |
|
|
|
if script_args.just_eval: |
|
gold_eval( |
|
eval_dataloader, |
|
ppo_trainer.model, |
|
gold_model, |
|
ppo_trainer.accelerator, |
|
epoch=0, |
|
log_n_samples_during_eval=0, |
|
) |
|
exit() |
|
|
|
if script_args.separate_reward_model: |
|
device = ppo_trainer.accelerator.device |
|
if ppo_trainer.accelerator.num_processes == 1: |
|
device = 0 if torch.cuda.is_available() else "cpu" |
|
sentiment_pipe = pipeline( |
|
"sentiment-analysis", |
|
model=script_args.separate_reward_model, |
|
device_map={"": Accelerator().local_process_index}, |
|
model_kwargs={"load_in_8bit": True}, |
|
tokenizer=tokenizer, |
|
return_token_type_ids=False, |
|
) |
|
sent_kwargs = { |
|
"return_all_scores": True, |
|
"function_to_apply": "none", |
|
"batch_size": 16, |
|
"truncation": True, |
|
} |
|
|
|
|
|
|
|
generation_kwargs = { |
|
"min_length": -1, |
|
"top_k": 0.0, |
|
"top_p": 1.0, |
|
"do_sample": True, |
|
"pad_token_id": tokenizer.pad_token_id, |
|
"eos_token_id": tokenizer.eos_token_id, |
|
} |
|
output_length_sampler = LengthSampler(script_args.output_min_length, script_args.output_max_length) |
|
|
|
for epoch, batch in tqdm( |
|
enumerate(ppo_trainer.dataloader), |
|
total=config.total_ppo_epochs, |
|
disable=not ppo_trainer.accelerator.is_local_main_process, |
|
): |
|
if epoch >= config.total_ppo_epochs: |
|
break |
|
|
|
question_tensors = batch["input_ids"] |
|
|
|
full_response_tensors = ppo_trainer.generate( |
|
question_tensors, |
|
return_prompt=True, |
|
length_sampler=output_length_sampler, |
|
**generation_kwargs, |
|
) |
|
|
|
response_tensors = [] |
|
for question, full_response in zip(question_tensors, full_response_tensors): |
|
response_tensors.append(full_response[len(question) :]) |
|
|
|
batch["response"] = tokenizer.batch_decode(response_tensors, skip_special_tokens=True) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
texts = [q + r for q, r in zip(batch["query"], batch["response"])] |
|
policy_output = tokenizer( |
|
texts, padding=True, truncation=True, return_tensors="pt", return_token_type_ids=False |
|
).to(ppo_trainer.accelerator.device) |
|
|
|
|
|
|
|
|
|
|
|
raw_rewards = ppo_trainer.compute_reward_model_score(**policy_output) |
|
rewards = [(raw_rewards[i] - script_args.reward_baseline) for i in range(len(raw_rewards))] |
|
|
|
|
|
if not script_args.just_eval: |
|
stats = ppo_trainer.step(question_tensors, response_tensors, rewards) |
|
else: |
|
stats = {} |
|
|
|
if script_args.eval_steps is not None and epoch % script_args.eval_steps == 0: |
|
if script_args.gold_eval_greedy: |
|
greedy_generation_kwargs = { |
|
"min_length": -1, |
|
"top_p": 1.0, |
|
"do_sample": False, |
|
"pad_token_id": tokenizer.pad_token_id, |
|
"eos_token_id": tokenizer.eos_token_id, |
|
"max_new_tokens": script_args.output_max_length, |
|
} |
|
greedy_output = ppo_trainer.generate( |
|
question_tensors, |
|
return_prompt=True, |
|
**greedy_generation_kwargs, |
|
) |
|
max_length = script_args.input_max_length + script_args.output_max_length |
|
policy_output = tokenizer.batch_decode(greedy_output, skip_special_tokens=True) |
|
|
|
with torch.no_grad(): |
|
gold_rewards = gold_model(**policy_output)[0] |
|
else: |
|
gold_rewards = None |
|
|
|
stats["epoch"] = epoch |
|
ppo_trainer.log_stats(stats, batch, rewards, gold_rewards) |
|
|
|
|
|
|
|
if script_args.save_strategy != "no" and epoch > 0 and epoch % script_args.save_steps == 0: |
|
ppo_trainer.save_pretrained(script_args.output_dir + f"step_{epoch}") |
|
|