# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from dataclasses import asdict, dataclass, field from typing import Dict, List, Literal, Optional import torch from accelerate import Accelerator from callbacks import GoldModelRewardCallback, PerplexityCallback, PerplexityGenCallback from datasets import builder, concatenate_datasets, load_dataset from peft import AutoPeftModelForCausalLM, LoraConfig, PeftConfig, get_peft_model, prepare_model_for_kbit_training from scalar_rm_model import ScalarModel from transformers import ( AutoModelForCausalLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, GenerationConfig, HfArgumentParser, TrainerCallback, TrainingArguments, ) from transformers.trainer_utils import get_last_checkpoint import wandb from trl import DPOTrainer builder.has_sufficient_disk_space = lambda needed_bytes, directory=".": True # Define and parse arguments. @dataclass class ScriptArguments: """ The arguments for the DPO training script. """ # data parameters dataset_name: Optional[str] = field( default="mnoukhov/openai_summarize_comparisons_tldrprompt_relabel1b", metadata={"help": "the dataset name"} ) train_split: Optional[str] = field(default="train", metadata={"help": "the dataset split to train on"}) eval_split: Optional[str] = field( default="test", metadata={"help": "the dataset split to evaluate on; default to 'none' (no evaluation)"} ) beta: Optional[float] = field(default=0.1, metadata={"help": "the beta parameter for DPO loss"}) pseudo_dataset_name: Optional[str] = field(default=None, metadata={"help": "the dataset name"}) pseudo_dataset_split: Optional[str] = field(default="train", metadata={"help": "the dataset name"}) prompt_field: Optional[str] = field(default="prompt") # model parameters model_name: Optional[str] = field(default="gpt2", metadata={"help": "the model name"}) model_revision: Optional[str] = field(default=None, metadata={"help": "the model name"}) ref_model_name: Optional[str] = field(default="gpt2", metadata={"help": "the model name"}) ref_model_revision: Optional[str] = field(default=None, metadata={"help": "the model name"}) tokenizer_name: Optional[str] = field(default=None, metadata={"help": "the model name"}) bf16: Optional[bool] = field( default=False, metadata={ "help": "This essentially cuts the training time in half if you want to sacrifice a little precision and have a supported GPU." }, ) fp16_model: Optional[bool] = field( default=False, metadata={ "help": "This essentially cuts the training time in half if you want to sacrifice a little precision and have a supported GPU." }, ) fp16: Optional[bool] = field( default=False, metadata={ "help": "This essentially cuts the training time in half if you want to sacrifice a little precision and have a supported GPU." }, ) load_in_8bit: Optional[bool] = field(default=False, metadata={"help": "load the model in 8 bits precision"}) load_in_4bit: Optional[bool] = field(default=False, metadata={"help": "load the model in 4 bits precision"}) use_peft: Optional[bool] = field(default=True, metadata={"help": "Wether to use PEFT or not to train adapters"}) lora_alpha: Optional[float] = field(default=16, metadata={"help": "the lora alpha parameter"}) lora_dropout: Optional[float] = field(default=0.05, metadata={"help": "the lora dropout parameter"}) lora_r: Optional[int] = field(default=8, metadata={"help": "the lora r parameter"}) # training parameters optimizer_type: Optional[str] = field(default="adamw_torch", metadata={"help": "the optimizer type"}) warmup_steps: Optional[int] = field(default=150) learning_rate: Optional[float] = field(default=1e-3, metadata={"help": "optimizer learning rate"}) lr_scheduler_type: Optional[str] = field(default="linear") per_device_train_batch_size: Optional[int] = field(default=4, metadata={"help": "batch size per device"}) per_device_eval_batch_size: Optional[int] = field(default=8, metadata={"help": "batch size per device"}) gradient_accumulation_steps: Optional[int] = field( default=1, metadata={"help": "the number of gradient accumulation steps"} ) max_length: Optional[int] = field(default=560, metadata={"help": "max length of each sample"}) max_prompt_length: Optional[int] = field(default=512, metadata={"help": "max length of each sample's prompt"}) max_target_length: Optional[int] = field( default=48, metadata={"help": "Only used for encoder decoder model. Max target of each sample's prompt"} ) num_train_epochs: Optional[int] = field(default=1, metadata={"help": "the number of training epochs"}) max_steps: Optional[int] = field(default=-1) gradient_checkpointing: Optional[bool] = field( default=False, metadata={"help": "whether to use gradient checkpointing"} ) # instrumentation seed: Optional[int] = field(default=0) output_dir: Optional[str] = field(default="results", metadata={"help": "the output directory"}) logging_steps: Optional[int] = field(default=100, metadata={"help": "the number of update steps between two logs"}) log_n_samples_during_eval: Optional[int] = field(default=100) eval_steps: Optional[float] = field(default=None, metadata={"help": "the number of steps to eval at"}) save_steps: Optional[float] = field(default=1000, metadata={"help": "the number of steps to save at"}) save_strategy: Optional[str] = field(default="steps") report_to: Optional[str] = field( default="wandb", metadata={ "help": 'The list of integrations to report the results and logs to. Supported platforms are `"azure_ml"`,' '`"comet_ml"`, `"mlflow"`, `"neptune"`, `"tensorboard"`,`"clearml"` and `"wandb"`. ' 'Use `"all"` to report to all integrations installed, `"none"` for no integrations.' }, ) # debug argument for distributed training ignore_bias_buffers: Optional[bool] = field( default=False, metadata={ "help": "fix for DDP issues with LM bias/mask buffers - invalid scalar type,`inplace operation. See" "https://github.com/huggingface/transformers/issues/22482#issuecomment-1595790992" }, ) push_to_hub: Optional[bool] = field(default=False) push_to_hub_organization: Optional[str] = field(default=None) # gold model gold_eval: Literal["full", "gen", "ppl", "none"] = field(default="full") gold_model_name: str = field(default=None, metadata={"help": "the gold reward model name"}) gold_model_revision: Optional[str] = field(default=None, metadata={"help": "the model name"}) gold_in_8bit: Optional[bool] = field(default=False, metadata={"help": "gold the model in 8 bits precision"}) gold_in_4bit: Optional[bool] = field(default=False, metadata={"help": "gold the model in 4 bits precision"}) gold_bf16: Optional[bool] = field( default=False, ) gold_fp16: Optional[bool] = field( default=False, ) generate_greedy: Optional[bool] = field(default=True) gold_dataset_name: Optional[str] = field( default="CarperAI/openai_summarize_tldr", metadata={"help": "the dataset name"} ) gold_eval_split: Optional[str] = field(default="valid") gold_prompt_field: Optional[str] = field(default="prompt") gold_target_field: Optional[str] = field(default="label") gold_load_and_unload: Optional[str] = field(default=False) mode: Literal["train", "eval", "predict", "relabel"] = field(default="train") eval_first_step: Optional[bool] = field(default=True) strip_prompt: Optional[bool] = field(default=True) def create_and_prepare_model(args): if args.load_in_8bit and args.load_in_4bit: raise ValueError("You can't load the model in 8 bits and 4 bits at the same time") elif args.load_in_8bit or args.load_in_4bit: quantization_config = BitsAndBytesConfig(load_in_8bit=args.load_in_8bit, load_in_4bit=args.load_in_4bit) device_map = {"": Accelerator().local_process_index} else: device_map = None quantization_config = None if args.bf16: dtype = torch.bfloat16 elif args.fp16_model: dtype = torch.float16 else: dtype = torch.float32 tokenizer_name = args.tokenizer_name if "adapter" in args.model_name: model_cls = AutoPeftModelForCausalLM config = PeftConfig.from_pretrained(args.model_name) if tokenizer_name is None: tokenizer_name = config.base_model_name_or_path else: model_cls = AutoModelForCausalLM if tokenizer_name is None: tokenizer_name = args.model_name model = model_cls.from_pretrained( args.model_name, revision=args.model_revision, quantization_config=quantization_config, device_map=device_map, torch_dtype=dtype, ) model.config.torch_dtype = dtype model.config.use_cache = not script_args.gradient_checkpointing # if script_args.ignore_bias_buffers: # torch distributed hack if quantization_config is not None: model = prepare_model_for_kbit_training(model, use_gradient_checkpointing=script_args.gradient_checkpointing) # we add `score` to the list of modules to save to # correctly save the score head. # set target modules to be query_key_value for Pythia if args.use_peft and args.mode == "train": peft_config = LoraConfig( r=args.lora_r, lora_alpha=args.lora_alpha, lora_dropout=args.lora_dropout, bias="none", task_type="CAUSAL_LM", target_modules="all-linear", ) model = get_peft_model(model, peft_config) ref_model = None else: ref_model = AutoModelForCausalLM.from_pretrained( args.ref_model_name, revision=args.ref_model_revision, quantization_config=quantization_config, device_map=device_map, torch_dtype=dtype, ) tokenizer = AutoTokenizer.from_pretrained(tokenizer_name) if tokenizer_name.startswith("EleutherAI"): tokenizer.add_special_tokens({"pad_token": "[PAD]"}) elif getattr(tokenizer, "pad_token", None) is None: tokenizer.pad_token = tokenizer.eos_token return model, tokenizer, ref_model def create_and_prepare_gold_model(args): if script_args.gold_in_8bit or script_args.gold_in_4bit: gold_quantization_config = BitsAndBytesConfig( load_in_8bit=script_args.gold_in_8bit, load_in_4bit=script_args.gold_in_4bit ) gold_device_map = {"": Accelerator().local_process_index} else: gold_device_map = None gold_quantization_config = None if script_args.gold_bf16: torch_dtype = torch.bfloat16 elif script_args.gold_fp16: torch_dtype = torch.float16 else: torch_dtype = torch.float32 if script_args.gold_model_name.startswith("vwxyzjn"): gold_model_cls = ScalarModel else: gold_model_cls = AutoModelForSequenceClassification gold_model = gold_model_cls.from_pretrained( script_args.gold_model_name, revision=script_args.gold_model_revision, quantization_config=gold_quantization_config, torch_dtype=torch_dtype, device_map=gold_device_map, ) # if getattr(gold_model.config, "pad_token_id", None) is None: # gold_model.config.pad_token_id = gold_model.config.eos_token_id return gold_model def strip_prompt(examples): examples["prompt"] = [prompt.strip() for prompt in examples["prompt"]] return examples def create_and_prepare_dataset(args, tokenizer): train_dataset = load_dataset(args.dataset_name, split=args.train_split) eval_dataset = load_dataset(args.dataset_name, split=args.eval_split) if args.prompt_field != "prompt": train_dataset = train_dataset.rename_column(args.prompt_field, "prompt") eval_dataset = eval_dataset.rename_column(args.prompt_field, "prompt") if args.pseudo_dataset_name is not None: all_train_datasets = [train_dataset] pseudo_dataset_names = args.pseudo_dataset_name.split(",") for ds_name in pseudo_dataset_names: dataset = load_dataset(ds_name, split=args.pseudo_dataset_split) if args.strip_prompt: dataset = dataset.map(strip_prompt, batched=True) all_train_datasets.append(dataset) train_dataset = concatenate_datasets(all_train_datasets) if args.dataset_name.startswith("vwxyzjn"): # remove eos token from end of chosen def remove_eos(example): example["chosen"] = example["chosen"].removesuffix(tokenizer.eos_token) example["rejected"] = example["rejected"].removesuffix(tokenizer.eos_token) return example train_dataset = train_dataset.map(remove_eos) eval_dataset = eval_dataset.map(remove_eos) return train_dataset, eval_dataset if __name__ == "__main__": parser = HfArgumentParser(ScriptArguments) script_args = parser.parse_args_into_dataclasses()[0] # 1. load a pretrained model model, tokenizer, ref_model = create_and_prepare_model(script_args) if script_args.ignore_bias_buffers: # torch distributed hack model._ddp_params_and_buffers_to_ignore = [ name for name, buffer in model.named_buffers() if buffer.dtype == torch.bool ] train_dataset, eval_dataset = create_and_prepare_dataset(script_args, tokenizer) if script_args.push_to_hub: # configname_wandbid model_id = os.getenv("WANDB_NAME", "config_name") + "_" + os.getenv("WANDB_RUN_ID", "xxxxx") hub_model_id = f"{script_args.push_to_hub_organization}/{model_id}" print(f"pushing model to {hub_model_id}") else: hub_model_id = None # 4. initialize training arguments: training_args = TrainingArguments( output_dir=script_args.output_dir, per_device_train_batch_size=script_args.per_device_train_batch_size, per_device_eval_batch_size=script_args.per_device_eval_batch_size, num_train_epochs=script_args.num_train_epochs, max_steps=script_args.max_steps, remove_unused_columns=False, gradient_accumulation_steps=script_args.gradient_accumulation_steps, learning_rate=script_args.learning_rate, lr_scheduler_type=script_args.lr_scheduler_type, evaluation_strategy="epoch" if script_args.eval_steps is None else "steps", save_strategy=script_args.save_strategy, logging_first_step=True, logging_steps=script_args.logging_steps, eval_steps=script_args.eval_steps, save_steps=script_args.save_steps, optim=script_args.optimizer_type, warmup_steps=script_args.warmup_steps, report_to=script_args.report_to, bf16=script_args.bf16, fp16=script_args.fp16, ddp_find_unused_parameters=(script_args.gradient_checkpointing), push_to_hub=script_args.push_to_hub, hub_model_id=hub_model_id, ) # 5. initialize the DPO trainer dpo_trainer = DPOTrainer( model=model, ref_model=ref_model, args=training_args, beta=script_args.beta, train_dataset=train_dataset, eval_dataset=eval_dataset, tokenizer=tokenizer, max_length=script_args.max_length, max_target_length=script_args.max_target_length, max_prompt_length=script_args.max_prompt_length, ) if dpo_trainer.accelerator.is_local_main_process: wandb.init(reinit=True) wandb.config.update(asdict(script_args), allow_val_change=True) # Gold Eval if script_args.gold_eval != "none" and script_args.mode in ["train", "eval"]: gold_eval_dataset = load_dataset( script_args.gold_dataset_name, split=script_args.gold_eval_split, ) if script_args.strip_prompt: gold_eval_dataset = gold_eval_dataset.map(strip_prompt, batched=True) if script_args.generate_greedy: generation_config = GenerationConfig( max_new_tokens=script_args.max_target_length, do_sample=False, num_beams=1, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.eos_token_id, ) else: generation_config = GenerationConfig( max_new_tokens=script_args.max_target_length, min_length=-1, top_k=0.0, top_p=1.0, do_sample=True, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.eos_token_id, ) if script_args.gold_eval == "full": gold_model = create_and_prepare_gold_model(script_args) callback = GoldModelRewardCallback( training_args, gold_model, gold_eval_dataset, tokenizer, dpo_trainer.accelerator, script_args.max_length, script_args.max_prompt_length, script_args.gold_prompt_field, script_args.gold_target_field, script_args.gold_load_and_unload, script_args.log_n_samples_during_eval, generation_config, ) else: if script_args.gold_eval == "gen": callback_cls = PerplexityGenCallback elif script_args.gold_eval == "ppl": callback_cls = PerplexityCallback else: raise NotImplementedError callback = callback_cls( args=training_args, dataset=gold_eval_dataset, tokenizer=tokenizer, accelerator=dpo_trainer.accelerator, max_length=script_args.max_length, max_prompt_length=script_args.max_prompt_length, prompt_field=script_args.gold_prompt_field, target_field=script_args.gold_target_field, log_n_samples_during_eval=script_args.log_n_samples_during_eval, generation_config=generation_config, hub_model_id=hub_model_id, ) dpo_trainer.add_callback(callback) if script_args.eval_first_step: class EvaluateFirstStepCallback(TrainerCallback): def on_step_end(self, args, state, control, **kwargs): if state.global_step == 1: control.should_evaluate = True dpo_trainer.add_callback(EvaluateFirstStepCallback()) # 6. train if script_args.mode == "train": last_checkpoint = get_last_checkpoint(script_args.output_dir) dpo_trainer.train(resume_from_checkpoint=last_checkpoint) dpo_trainer.save_model(script_args.output_dir + "/final_model") elif script_args.mode == "eval": print("evaluating") results = dpo_trainer.evaluate() print(results) elif script_args.mode == "relabel": def relabel_with_preds(batch: Dict[str, List]): relabel_batch = { "prompt": [], "chosen": [], "rejected": [], "pred_chosen": [], "pred_rejected": [], } for prompt, chosen, rejected, pred_chosen, pred_rejected in zip( batch["prompt"], batch["chosen"], batch["rejected"], batch["pred_chosen"], batch["pred_rejected"], ): relabel_batch["prompt"].append(prompt) if pred_chosen >= pred_rejected: relabel_batch["chosen"].append(chosen) relabel_batch["rejected"].append(rejected) relabel_batch["pred_chosen"].append(pred_chosen) relabel_batch["pred_rejected"].append(pred_rejected) else: relabel_batch["chosen"].append(rejected) relabel_batch["rejected"].append(chosen) relabel_batch["pred_chosen"].append(pred_rejected) relabel_batch["pred_rejected"].append(pred_chosen) return relabel_batch dpo_trainer.accelerator.print(f"Prediction {script_args.eval_split}") preds, _, metrics = dpo_trainer.predict(eval_dataset) ( chosen_rewards, rejected_rewards, policy_chosen_logps, policy_rejected_logps, reference_chosen_logps, reference_rejected_logps, ) = preds dpo_trainer.accelerator.print(f"metrics {metrics}") if dpo_trainer.accelerator.is_local_main_process: print("Relabelling Dataset and Saving") dataset = load_dataset(script_args.dataset_name, split=script_args.eval_split) dataset = dataset.add_column("pred_chosen", chosen_rewards) dataset = dataset.add_column("pred_rejected", rejected_rewards) relabel_dataset = dataset.map( relabel_with_preds, batched=True, ) description = f"{script_args.dataset_name} relabelled with {script_args.model_name}" relabel_dataset._info.description = description if dpo_trainer.accelerator.is_local_main_process: # print("Saving") # relabel_dataset.save_to_disk(script_args.output_dir) print("Pushing") # repo_id = f"MilaRLHF/{os.path.basename(script_args.output_dir)}" relabel_dataset.push_to_hub(os.path.basename(script_args.output_dir), split=script_args.eval_split) # relabel_dataset_card = DatasetCard.load(repo_id) # relabel_dataset_card.text = description # relabel_dataset_card.push_to_hub(repo_id) elif script_args.mode == "predict": dpo_trainer.accelerator.print(f"Prediction {script_args.eval_split}") preds, _, metrics = dpo_trainer.predict(eval_dataset) ( chosen_rewards, rejected_rewards, policy_chosen_logps, policy_rejected_logps, reference_chosen_logps, reference_rejected_logps, ) = preds dpo_trainer.accelerator.print(f"metrics {metrics}") if dpo_trainer.accelerator.is_local_main_process: print("Relabelling Dataset and Saving") dataset = load_dataset(script_args.dataset_name, split=script_args.eval_split) model_basename = script_args.model_name.rsplit("/", 1)[-1] dataset = dataset.add_column(f"pred_chosen_{model_basename}", chosen_rewards) dataset = dataset.add_column(f"pred_rejected_{model_basename}", rejected_rewards) if dpo_trainer.accelerator.is_local_main_process: # print("Saving") # relabel_dataset.save_to_disk(script_args.output_dir) print("Pushing") dataset.push_to_hub(os.path.basename(script_args.output_dir), split=script_args.eval_split)