File size: 2,791 Bytes
dce0e12
 
 
 
 
e0255e0
 
dce0e12
 
 
 
 
 
 
 
 
 
 
e0255e0
 
 
 
dce0e12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0255e0
dce0e12
 
 
 
 
 
e0255e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dce0e12
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
license: apache-2.0
base_model: t5-small
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: t5-small-finetuned-Informal_Text-to-Formal_Text
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# t5-small-finetuned-Informal_Text-to-Formal_Text

This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.6182
- Bleu: 0.1261
- Gen Len: 16.6

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Bleu   | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|
| No log        | 1.0   | 3    | 5.5916          | 0.0865 | 16.4667 |
| No log        | 2.0   | 6    | 5.0599          | 0.081  | 16.4667 |
| No log        | 3.0   | 9    | 4.8082          | 0.0836 | 16.4667 |
| No log        | 4.0   | 12   | 4.6234          | 0.0907 | 16.4667 |
| No log        | 5.0   | 15   | 4.3832          | 0.0901 | 16.4667 |
| No log        | 6.0   | 18   | 4.2065          | 0.1009 | 16.6    |
| No log        | 7.0   | 21   | 4.0848          | 0.121  | 16.6    |
| No log        | 8.0   | 24   | 3.9779          | 0.1318 | 16.6    |
| No log        | 9.0   | 27   | 3.9105          | 0.1406 | 16.6    |
| No log        | 10.0  | 30   | 3.8476          | 0.1444 | 16.6    |
| No log        | 11.0  | 33   | 3.7890          | 0.1414 | 16.6    |
| No log        | 12.0  | 36   | 3.7414          | 0.1414 | 16.6    |
| No log        | 13.0  | 39   | 3.7097          | 0.1414 | 16.6    |
| No log        | 14.0  | 42   | 3.6856          | 0.1328 | 16.6    |
| No log        | 15.0  | 45   | 3.6665          | 0.1237 | 16.6    |
| No log        | 16.0  | 48   | 3.6510          | 0.1237 | 16.6    |
| No log        | 17.0  | 51   | 3.6392          | 0.1226 | 16.6    |
| No log        | 18.0  | 54   | 3.6295          | 0.1226 | 16.6    |
| No log        | 19.0  | 57   | 3.6224          | 0.1261 | 16.6    |
| No log        | 20.0  | 60   | 3.6182          | 0.1261 | 16.6    |


### Framework versions

- Transformers 4.40.1
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1